Answer:
B. It undergoes a physical change.
Explanation:
Hello there!
In this case, since we know that chemical changes lead to the formation of new atoms and/or compounds due to the bonds rearrangement of the initial substances and the physical changes occur without changing the composition of the initial substances, we can infer that, since melting is a process that changes the phase of matter from solid to liquid without changing the identity of the initial substance, the answer to this question would be B. It undergoes a physical change. because the other options describe chemical changes.
Best regards!
The first option, collapsed in on itself.
The star's core mass becomes so dense that the resulting gravity implodes the star.
Interesting enough, the third option is kindof true too...some large and tenacious black holes that absorb other stars will form incredibly bright accretion disks around their perimeter before filling absorbing the star.
Answer:
Take a look at the attachment below
Explanation:
Take a look at the periodic table. As you can see, Rubidium is the closest element to Cesium, and happens to have the closest boiling point to Cesium, with only a difference of about 30 degrees.
Respectively, you would think that fluorine should have the least similarity to Cesium with respect to it's boiling point, considering it is the farthest away from the element out of the 4 given. This is not an actual rule, there are no fixed trends of boiling points in the periodic table, there are some but overall the trends vary. However in this case fluorine does have the least similarity to Cesium with respect to it's boiling point, a difference of about 1,546.6 degrees.
<em>Hope that helps!</em>