Answer:
Down below
Explanation:
The following uses nickel(II) chloride
2AgNO3(aq) + NiCl2(aq) ==> Ni(NO3)2(aq) + 2AgCl(s) Molecular
Answer:
None
Explanation:
Cl₂ is above Br₂ in the activity series.
Bromine will not displace chlorine from its salts.
The reaction will not occur.
Well, when an atom attains a stable valence electron, it means that the outer electrons are complete and so cannot attain any more electrons. For the first shell, it is complete when it has 2 electrons, the second shell is complete when it has 8 electrons, all the other shells also have a particular number when complete. Anyway, i believe the answer is HYDROGEN because when HYDROGEN combines with another atom of HYDROGEN, the outer shell is completed. This is because HYDROGEN has only 1 electron. If the two HYDROGENS, which both have 1 electron combine, they make the electrons 2, which is complete for the first shell, HYDROGEN ends in the first shell. Since the electrons become 2, the shell is at stable valence. In all the other options, this happens;
NEON- It has 10 electrons, 2 in the first shell and 8 in the second. So the the shells are already complete, so it can't bond with any thing, which is completely against the question.
RADON- Radon has 86 electrons.
HELIUM- Helium has 2 electrons, so the shell is already full, and cannot bond, so it goes against the question. The question says BY BONDING.
So the answer is definitely 4) HYDROGEN
Hope i helped. Have a nice day, by the way, i'm very sure it's hydrogen.
The formula is m = D x V
D = <span>13.69 g/cm^3.
</span>V = <span>15.0 cm^3
the mass of the liquid mercury is m= </span>13.69 g/cm^3 x 15.0 cm^3 = 195g
the molar mass of Hg is 200,
1 mole of Hg = 200g Hg, so #mole of Hg= 195 / 200 = 0.97 mol
but we know that
1 mole = 6.022 E23 atoms
0.97 mole=?
6.022 E23 atoms x 0.97 / 1 mole = 5.84 E23 atoms
Answer : The pressure of gas will be, 3.918 atm and the combined gas law is used for this problem.
Solution :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 3 atm
= final pressure of gas = ?
= initial volume of gas = 1.40 L
= final volume of gas = 0.950 L
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get the final pressure of gas.


Therefore, the pressure of gas will be, 3.918 atm and the combined gas law is used for this problem.