S= R- 1/3R
The first problem s=18 r-= 6
This is how it works
Use S-= R-1/3R
12= 18-1/3(18)
12= 18-6
12=12
45 + 65 = 5m + 65
45 = 5m
m = 9
1. Take an arbitrary point that lies on the first line y=3x+10. Let x=0, then y=10 and point has coordinates (0,10).
2. Use formula
to find the distance from point
to the line Ax+By+C=0.
The second line has equation y=3x-20, that is 3x-y-20=0. By the previous formula the distance from the point (0,10) to the line 3x-y-20=0 is:
.
3. Since lines y=3x+10 and y=3x-20 are parallel, then the distance between these lines are the same as the distance from an arbitrary point from the first line to the second line.
Answer:
.
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]: 
Limit Rule [Variable Direct Substitution Exponential]: 
Limit Property [Multiplied Constant]: 
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Solve</u>
- Rewrite [Limit Property - Multiplied Constant]:
![\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4} \lim_{x \to 0} [f(x)]^4](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B1%7D%7B4%7D%5Bf%28x%29%5D%5E4%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Bf%28x%29%5D%5E4)
- Evaluate limit [Limit Rule - Variable Direct Substitution Exponential]:
![\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4}(4^4)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B1%7D%7B4%7D%5Bf%28x%29%5D%5E4%20%3D%20%5Cfrac%7B1%7D%7B4%7D%284%5E4%29)
- Simplify:
![\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = 64](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B1%7D%7B4%7D%5Bf%28x%29%5D%5E4%20%3D%2064)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Book: College Calculus 10e
The first choice is right, area of 1 is 20, area of 2 is 16