Solid phase. The atoms are tightly packed and vibrate.
Answer:
They both are part of electromagnetic radiation.
Radio waves have longer wavelength than visible waves.
Radio waves have lower frequency than visible waves.
Explanation:
To solve this problem it is necessary to address the concepts related to Torque as a function of the force and distance where it is applied and the moment of inertia from which the torque, moment of inertia and angular acceleration are related.
By definition the torque is defined as

Where,

F = Force
r = Radius
For our values we have:



Consequently the calculation of the moment of inertia would then be given by the relationship


Replacing with our values


The moment of inertia of the boxer's forearm 
<h3>SCIENTIFIC INSTRUMENT</h3>
==============================

- What scientific instrument is sensitive enough to detect a planet transiting a star on the Kepler Spacecraft?
==============================


==============================

- A photometer is an instrument that measures and quantifies the brightness of a celestial body.
==============================
<h3>Mutual
Information:</h3>
==============================
Answer:
(a) -16.7 N s; (b) -167 N
Explanation:
Given: m = 0.530 kg; vi = 18.0 m/s; vf = 13.5 m/s; t = 0.100 s
Find: (a) Impulse, (b) Force
(a) Impulse = Momentum Change = m•Delta v = m•(vf - vi)= (0.530 kg)•( -13.5 m/s - 18.0 m/s)
Impulse = -16.7 kg•m/s = -16.7 N•s
where the "-" indicates that the impulse was opposite the original direction of motion.
(Note that a kg•m/s is equivalent to a N•s)
(b) The impulse is the product of force and time. So if impulse is known and time is known, force can be easily determined.
Impulse = F•t
F = Impulse/t = (-16.7 N s) / (0.100 s) = -167 N
where the "-" indicates that the impulse was opposite the original direction of motion.