The approximate height of the tsunami in Alaska in 1958 is 1720ft
Well if its a solid that your heating up then it would closely resemble a liquid and a gas. would be able to give a better answer if you provided more information
Answer:
The answer is "Slowing down
".
Explanation:
please find the complete question in the attached file.
In this question, if the block B weight were accounted for by kinetic the friction of frame A, because the blocks pushed at a consistent speed throughout the beginning.
Afterward, on block A, the resistance intensity rises, which allows frames to also be negative, which is defined in the graph, that's why the answer Slowing down is correct.
Answer:
0.14 J
Explanation:
The maximum velocity is the amplitude times the angular frequency.
vmax = Aω
ω = vmax / A
ω = (3.2 m/s) / (0.06 m)
ω = 53.3 rad/s
For a spring-mass system:
ω = √(k / m)
ω² = k / m
k = ω²m
k = (53.3 rad/s)² (0.050 kg)
k = 142 N/m
The elastic potential energy is:
EE = ½ kx²
EE = ½ (142 N/m) (0.044 m)²
EE = 0.14 J
When a source of light moves away from you, you see the characteristic lines in its spectrum move toward slightly longer wavelengths. Lines in the visible part of the spectrum move toward the red end.
When a source of light moves toward you, you see the characteristic lines in its spectrum move to slightly shorter wavelengths. Lines in the visible part of the spectrum move toward the violet end.
We see these 'shifts' when we look at the spectra of stars. "Red shift" is the change in the spectrum of a star when it's moving away from us, and "Blue shift" is the change when it's moving toward us. These measurements are the only way we have of measuring the radial motion of stars, and their speeds toward or away from us.
The whole subject of why a spectrum shifts toward longer or shorter wavelengths was explained by the Austrian physicist Christian Doppler in 1842, and it's known as the "Doppler Shift" in honor of him and his work.