D. There are two phosphate ions in a molecule of magnesium phosphate
Work done = 0.5*m*[(v2)^2 - (v1)^2]
where m is mass,
v2 and v1 are the velocities.
Given that m = 1.50 x 10^3 kg, v2 = -15 m/s (decelerates), v1 = 25 kg,
Work done = 0.5 * 1.50 x 10^3 * ((-15)^2 - 25^2) = 3 x 10^5 joules
Just ignore the negative value for the final result because work is a scalar quantity.
Incomplete Question.The Complete question is
The Earth spins on its axis and also orbits around the Sun. For this problem use the following constants. Mass of the Earth: 5.97 × 10^24 kg (assume a uniform mass distribution) Radius of the Earth: 6371 km Distance of Earth from Sun: 149,600,000 km
(i)Calculate the rotational kinetic energy of the Earth due to rotation about its axis, in joules.
(ii)What is the rotational kinetic energy of the Earth due to its orbit around the Sun, in joules?
Answer:
(i) KE= 2.56e29 J
(ii) KE= 2.65e33 J
Explanation:
i) Treating the Earth as a solid sphere, its moment of inertia about its axis is
I = (2/5)mr² = (2/5) * 5.97e24kg * (6.371e6m)²
I = 9.69e37 kg·m²
About its axis,
ω = 2π rads/day * 1day/24h * 1h/3600s
ω= 7.27e-5 rad/s,
so its rotational kinetic energy
KE = ½Iω² = ½ * 9.69e37kg·m² * (7.27e-5rad/s)²
KE= 2.56e29 J
(ii) About the sun,
I = mR²
I= 5.97e24kg * (1.496e11m)²
I= 1.336e47 kg·m²
and the angular velocity
ω = 2π rad/yr * 1yr/365.25day * 1day/24h * 1h/3600s
ω= 1.99e-7 rad/s
so
KE = ½ * 1.336e47kg·m² * (1.99e-7rad/s)²
KE= 2.65e33 J
Answer:
B
Explanation:
it's converts electrical energy to mechanical energy.
Answer:
8 Hz
Explanation:
Given that
Standing wave at one end is 24 Hz
Standing wave at the other end is 32 Hz.
Then the frequency of the standing wave mode of a string having a length, l, is usually given as
f(m) = m(v/2L), where in this case, m could be 1. 2. 3. 4 etc
Also, another formula is given as
f(m) = m.f(1), where f(1) is the fundamental frequency..
Thus, we could say that
f(m+1) - f(m) = (m + 1).f(1) - m.f(1) = f(1)
And as such,
f(1) = 32 - 24
f(1) = 8 Hz
Then, the fundamental frequency needed is 8 Hz