Answer:
Explanation:
Prescribe medications.
Prescribe treatments or therapies.
Treat patients using psychological therapies.
Collect medical information from patients, family members, or other medical professionals.
Record patient medical histories.
Develop medical treatment plans
The diagram shows a simple electric generator. The needle that measures electric current will move back and forth between a largely positive and a large negative value.
- What is an electric generator?
- An electric generator is physically equivalent to an electric motor. but it converts mechanical energy into electrical energy.
- The electrical field generated is dependent on the inclination of the wire with respect to magnetic field lines, and this inclination changes over time,
because of that she will experience a varying electrical field, and thus a varying electric current will be zero.
The maximum positive value will occur when the wire is perpendicular to the magnetic field lines after one-fourth of rotation, and then zero.
Hence option C is correct.
The diagram shows a simple electric generator. The needle that measures electric current will move back and forth between a largely positive and a large negative value.
Learn more about electric generator here:
<u>brainly.com/question/12296668</u>
<u />
#SPJ4
Answer:
21
Explanation:
21 is x because 211211 1 1 1 1 1aghh
Answer:
41.8m/s^2
Explanation:
Since the dragster starts from rest, initial velocity (u) = 0m/s, final velocity (v) = 25.9m/s, time (t) = 0.62s
From the equations of motion, v = u + at
a = (v - u)/t = (25.9 - 0)/0.62 = 25.9/0.62 = 41.8m/s^2
Answer:
30.63 m
Explanation:
From the question given above, the following data were obtained:
Total time (T) spent by the ball in air = 5 s
Maximum height (h) =.?
Next, we shall determine the time taken to reach the maximum height. This can be obtained as follow:
Total time (T) spent by the ball in air = 5 s
Time (t) taken to reach the maximum height =.?
T = 2t
5 = 2t
Divide both side by 2
t = 5/2
t = 2.5 s
Thus, the time (t) taken to reach the maximum height is 2.5 s
Finally, we shall determine the maximum height reached by the ball as follow:
Time (t) taken to reach the maximum height = 2.5 s
Acceleration due to gravity (g) = 9.8 m/s²
Maximum height (h) =.?
h = ½gt²
h = ½ × 9.8 × 2.5²
h = 4.9 × 6.25
h = 30.625 ≈ 30.63 m
Therefore, the maximum height reached by the cannon ball is 30.63 m