Answer:
C. equal to
Explanation:
1 Cubic meter (m³) is equal to 1000000 cubic centimeters (cm³). To convert cubic meters to cubic centimeters, multiply the cubic meter value by 1000000.
Player A needs the least amount of energy. The ball is light weight and she is closest to the goal so the momentum need to kick the ball will be the least and the distance is has to travel is the shortest. But player C needs the most amount of energy. The ball is heavy so it will take the most momentum to move the ball and over such a long distance. Hope this help idrk.
(1) You must find the point of equilibrium between the two forces,
<span>G * <span><span><span>MT</span><span>ms / </span></span><span>(R−x)^2 </span></span>= G * <span><span><span>ML</span><span>ms / </span></span><span>x^2
MT / (R-x)^2 = ML / x^2
So,
x = R * sqrt(ML * MT) - ML / (MT - ML)
R = is the distance between Earth and Moon.
</span></span></span>The result should be,
x = 3.83 * 10^7m
from the center of the Moon, and
R - x = 3.46*10^8 m
from the center of the Earth.
(2) As the distance from the center of the Earth is the number we found before,
d = R - x = 3.46*10^8m
The acceleration at this point is
g = G * MT / d^2
g = 3.33*10^-3 m/s^2
Answer:
P = 0.0644 atm
Explanation:
Given that,
The pressure of a sample of gas is measured as 49 torr.
We need to convert this temperature to atmosphere.
The relation between torr and atmosphere is as follow :
1 atm = 760 torr
1 torr = (1/760) atm
49 torr = (49/760) atm
= 0.0644 atm
Hence, the presssure of the sample of gas is equal to 0.0644 atm.