Answer:
According to coulomb's law their potential energy will increase and the particles will repel each other.
If you look closely at each of the four diagrams you would be able to conclude that
<span>D)
Yes. In B and D. In both cases, there is a net force.
In B, there is a net force to the left; in D there is a net force upward.
In A and C, the forces are in equilibrium both in the horizontal and vertical direction.</span>
Answer:
See below
Step-by-step explanation:
- Hydrogen either reacts with or is formed by reactions with many other elements, so chemists could use it directly to determine their relative masses.
- Hydrogen has the smallest atomic mass, so it was convenient to give H a relative atomic mass of 1 and assign those of other elements as multiples of this number.
The O = 16 scale became the standard in 1903 and carbon-12 was chosen in 1961.
Explanation:
Metals are the species which readily lose electrons in order to attain stability. This electron lost by the atom is actually present in its outermost shell which is also known as valence shell.
Ionization energy is defined as the energy required to remove the most loosely bound electron from a neutral gaseous atom.
When we move across a period from left to right then there occurs a decrease in atomic size of the atoms. Therefore, ionization energy increases along a period.
But when we move down a group then there occurs an increase in atomic size of the atoms due to addition of number of electrons in the atoms. Hence, ionization energy decreases along a group.
Thus, we can conclude that metals have low ionization energies and readily share their valence or outer electrons with each other to form an electron sea. These electrons are delocalized or shared among all the atoms that are bonded together and can therefore move freely throughout the metal structure.