Well. NaOH is a base. That's the first thing you need to watch for.
So to find the pOH, you take -log(.0001)
that would be 4. So now you have the pOH and <u>you still need to find the pH
</u>To find pH from pOH, you take 14(the maximum pH,sorta)-pOH(in this case 4)
14-4=10 The pH of NaOH is 10
(3.5mol)(24.106 g/1mol c6h6) =84.371 g C6H6
I think The answer is 34.5l
KOH+ HNO3--> KNO3+ H2O<span>
From this balanced equation, we know that 1 mol
HNO3= 1 mol KOH (keep in mind this because it will be used later).
We also know that 0.100 M KOH aqueous
solution (soln)= 0.100 mol KOH/ 1 L of KOH soln (this one is based on the
definition of molarity).
First, we should find the mole of KOH:
100.0 mL KOH soln* (1 L KOH soln/
1,000 mL KOH soln)* (0.100 mol KOH/ 1L KOH soln)= 1.00*10^(-2) mol KOH.
Now, let's find the volume of HNO3 soln:
1.00*10^(-2) mol KOH* (1 mol HNO3/ 1 mol KOH)* (1 L HNO3 soln/ 0.500 mol HNO3)* (1,000 mL HNO3 soln/ 1 L HNO3 soln)= 20.0 mL HNO3 soln.
The final answer is </span>(2) 20.0 mL.<span>
Also, this problem can also be done by using
dimensional analysis.
Hope this would help~
</span>
Answer:
Fe²⁺(aq) + S²⁻(aq )⟶ FeS(s)
Step-by-step explanation:
Molecular Equation:
(NH₄)₂S(aq) + FeCl₂(aq) ⟶ 2NH₄Cl(aq) + FeS(s)
Ionic equation
:
2NH₄⁺(aq) + S²⁻(aq) + Fe²⁺(aq) + 2Cl⁻(aq) ⟶ 2NH₄⁺(aq) + 2Cl⁻(aq) + FeS(s)
Net ionic equation
:
Cancel all ions that appear on both sides of the reaction arrow (underlined).
<u>2NH₄⁺(aq)</u> + S²⁻(aq) + Fe²⁺(aq) + <u>2Cl⁻(aq)</u> ⟶ <u>2NH₄⁺(aq) </u>+ 2<u>Cl⁻(aq) </u>+ FeS(s)
Fe²⁺(aq) + S²⁻(aq )⟶ FeS(s)