Answer:
Ba²⁺(aq) + SO₄²⁻(aq) ⟶ BaSO₄(s)
Explanation:
There are three steps you must follow. You must write the:
- Molecular equation
- Ionic equation
- Net ionic equation
A. Molecular equation
BaCl₂(aq) + Na₂SO₄(aq) ⟶ BaSO₄(s) + 2NaCl(aq)
B. Ionic equation
You write all the soluble substances as ions.
Ba²⁺(aq) + 2Cl⁻(aq) + 2Na⁺(aq) + SO₄²⁻(aq) ⟶ BaSO₄(s) + 2Na⁺(aq) + 2Cl⁻(aq)
C. Net ionic equation
To get the net ionic equation, you cancel the ions that appear on each side of the ionic equation.
Ba²⁺(aq) + <u>2Cl⁻(aq) </u>+ <u>2Na⁺(aq</u>) + SO₄²⁻(aq) ⟶ BaSO₄(s) + <u>2Na⁺(aq)</u> + <u>2Cl⁻(aq)
</u>
The net ionic equation is
Ba²⁺(aq) + SO₄²⁻(aq) ⟶ BaSO₄(s)
Explanation:
The given data is as follows.
= 98.70 kPa = 98700 Pa,
T =
= (30 + 273) K = 303 K
height (h) = 30 mm = 0.03 m (as 1 m = 100 mm)
Density = 13.534 g/mL = 
= 13534 
The relation between pressure and atmospheric pressure is as follows.
P = 
Putting the given values into the above formula as follows.
P = 
= 
= 102683.05 Pa
= 102.68 kPa
thus, we can conclude that the pressure of the given methane gas is 102.68 kPa.
<h3>Answer </h3>
After another 5730 years ( three half lives or 17190 years) 17.5 /2 = 8.75mg decays and 8.75g remains left. after three half lives or 17190 years, 8.75 g of C-14 will be
Explanation:
hope this help
B___________________________________________