The rock is limestone, I hope this helps!!
In order to form polymers, we need to chain molecules together. This involves making bonds between them.
Shifting H’s around doesn’t accomplish anything.
Forming more double bonds will have the opposite result, as it would make the molecules more stable and less likely to react with each other.
Adding oxygen to the molecule no longer makes it polybutene. That would likely result in the formation of some sort of ether, as hey would react to form a C-O-C Bond.
The only answer left is A. In order to form polyalkenes, we have to break a double bond so that it’s available to form more covalent bonds.
Hope this helps
Answer:
ummmmmmmmmmmmmmmm..mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
Explanation:
ummmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm.................... candyunicorns1999 has left the chat
Answer:
Approximately 75%.
Explanation:
Look up the relative atomic mass of Ca on a modern periodic table:
There are one mole of Ca atoms in each mole of CaCO₃ formula unit.
- The mass of one mole of CaCO₃ is the same as the molar mass of this compound:
. - The mass of one mole of Ca atoms is (numerically) the same as the relative atomic mass of this element:
.
Calculate the mass ratio of Ca in a pure sample of CaCO₃:
.
Let the mass of the sample be 100 g. This sample of CaCO₃ contains 30% Ca by mass. In that 100 grams of this sample, there would be
of Ca atoms. Assuming that the impurity does not contain any Ca. In other words, all these Ca atoms belong to CaCO₃. Apply the ratio
:
.
In other words, by these assumptions, 100 grams of this sample would contain 75 grams of CaCO₃. The percentage mass of CaCO₃ in this sample would thus be equal to:
.
Hello!
To do this, use the molar mass. This is how much a mole of an atom weighs. A mole is 6.02214076×10²³ atoms.
Molar masses of:
Se: 78.96 g/mol
Cu: 63.546 g/mol
Ba: 137.327 g/mol
Now, the element with the highest molar mass will have the fewest atoms. This is because the element weighs more, so therefore for the same amount of mass, there will be less of the element needed to reach that mass.
Therefore, 10g of Ba would have the fewest number of atoms.
Hope this helps!