

- <u>We </u><u>have </u><u>250g </u><u>of </u><u>liquid </u><u>water </u><u>and </u><u>it </u><u>needs </u><u>to </u><u>be </u><u>cool </u><u>at </u><u>temperature </u><u>from </u><u>1</u><u>0</u><u>0</u><u>°</u><u> </u><u>C </u><u>to </u><u>0</u><u>°</u><u> </u><u>C</u>
- <u>Specific </u><u>heat </u><u>of </u><u>water </u><u>is </u><u>4</u><u>.</u><u>1</u><u>8</u><u>0</u><u>J</u><u>/</u><u>g</u><u>°</u><u>C</u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the</u><u> </u><u>total</u><u> </u><u>number </u><u>of </u><u>joules </u><u>released</u><u>. </u>

<u>We </u><u>know </u><u>that</u><u>, </u>
Amount of heat energy = mass * specific heat * change in temperature
<u>That </u><u>is, </u>

<u>Subsitute </u><u>the </u><u>required </u><u>values </u><u>in </u><u>the </u><u>above </u><u>formula </u><u>:</u><u>-</u>




Hence, 104,500 J of heat is released to cool 250 grams of liquid water from 100° C to 0° C.

<u>We </u><u>have </u><u>to </u><u>tell </u><u>whether </u><u>the </u><u>above </u><u>process </u><u>is </u><u>endothermic </u><u>or </u><u>exothermic </u><u>:</u><u>-</u>
Here, In the above process ΔT is negative and as a result of it Q is also negative that means above process is Exothermic
- <u>Exothermic </u><u>process </u><u>:</u><u>-</u><u> </u><u>It </u><u>is </u><u>the </u><u>process </u><u>in </u><u>which </u><u>heat </u><u>is </u><u>evolved </u><u>. </u>
- <u>Endothermic </u><u>process </u><u>:</u><u>-</u><u> </u><u>It </u><u>is </u><u>the </u><u>process </u><u>in </u><u>which </u><u>heat </u><u>is </u><u>absorbed </u><u>.</u>
To find average atomic mass you multiply the mass of each isotope by its percentage, and then add the values up.
35 * 0.90 + 37 * 0.08 + 38 * 0.02 = 35.22
Average atomic mass closest to 35.22 amu.
Answer: 1s^22s^22p^63s^23p^3
Explanation:
Assuming that orbital configuration is the same as electron configuration this is the answer.
Answer: 4 hydrogens
Explanation:
This is what the structure will look like C=C. Remember that it's important that all structures have a complete octet. As it looks right now each carbon is sharing 4 valence electrons so each needs 2 more bonds to hydrogen complete its octet.
Answer:
The boiling point of 1-chlorobutane is substantially lower than that of 1-butanol
Explanation:
Fractional distillation is a separation process based on difference in boiling point of two compounds.
1-chlorobutane is a polar aprotic molecule due to presence of polar C-Cl bond. Hence dipole-dipole intermolecular force exists in 1-chlorobutane as a major force.
1-butanol is a polar protic molecule. Hence dipole-dipole force along with hydrogen bonding exist in 1-butanol.
Therefore intermolecular force is stronger in 1-butanol as compared to 1-chlorobutane.
So, boiling point of 1-butanol is much higher than 1-chlorobutane.
Hence mixture of 1-chlorobutane and 1-butanol can be separated by fractional distillation based on difference in boiling point.
So, option (D) is correct.