1/16 left would imply 4 half lives have passed (1/2 left = 1, 1/4 left = 2, 1/8 left = 3, 1/16 left = 4). So 4 half lives passed in 48 hours, meaning dividing 48 by 4 will give you the length of 1 half life. Which in this case is 12 hours.
Answer:
liquid has more attraction between molecules. It takes energy to break these forces to change the liquid to a gas.
Explanation:
because liquid has more attraction
Answer:
Nothing will happen as long as the magnitude of charges remains same...
Explanation:
We know that protons are 1836 times more massive than electrons but they have same magnitude of charge overall. So, if we reverse the polarities the system would still be stable as long as the magnitudes of charges are stable and vice versa.
Given Data:
P₁ = 122 atm
P₂ = 112 atm
V₁ = 113 L
V₂ = ?
Solution:
Let suppose the gas is acting ideally. According to Ideal gas equation, keeping the temperature constant,
P₁ V₁ = P₂ V₂
Solving for V₂,
V₂ = P₁ V₁ / P₂
Putting Values,
V₂ = (122 atm × 113 L) ÷ 112 atm
V₂ = 113 L
Converting Volume to Moles,
As,
22.4 L is occupied by = 1 mole of He gas
So,
113 L will occupy = X moles of He gas
Solving for X,
X = (113 L × 1 mole) ÷ 22.4 L
X = 5.04 Moles of He
Answer:
5. Atoms with high ionization energies and high electron affinities have low electronegativities.
Explanation:
Ionization energy is the minimum amount of energy which is required to knock out the loosely bound valence electron from the isolated gaseous atom.
Electron affinity is the amount of energy released when an isolated gaseous atom accepts electron to form the corresponding anion.
Electronegativity is the tendency of an atom in a bond pair to attract the shared pair of electron towards itself.
Low ionization energies as well as low electron affinities mean the atom has low effective nuclear charge, which results in the less attraction of the valence electrons by the atom and thus, low electronegativity.