Answer:
D.
Explanation:
It would not be gain because it would say +6 instead of -2. Having a -2 charge means it wants to loose 2 electrons so it can form a full shell of 8 electrons. It wants to be inert (stable).
- Hope that helps! Please let me know if you need further explanation.
Answer:
A. The conditions are:
I. Reactant particles must collide with the right orientation.
II. There must be effective collisions.
III. The reactant particles must possess enough energy to break old bonds so that new bonds can be formed.
B. The activated complex occurs where the maximum energy of the reaction is attained along the reaction pathway, that is, at the peak of the activation energy.
75.0 mL in liters:
75.0 / 1000 => 0.075 L
1 mole -------------------- 22.4 L ( at STP)
( moles Hg) ------------- 0.075 L
moles Hg = 0.075 x 1 / 22.4
moles = 0.075 / 22.4
= 0.00334 moles of Hg
Hg => 200.59 u
1 mole Hg ----------------- 200.59 g
<span>0.00334 moles Hg ----- ( mass Hg )
</span>
mass Hg = 200.59 x 0.00334 / 1
mass Hg = 0.6699 / 1
= 0.6699 g of Hg
Answer:
53.3 %.
Explanation: C2H4O2. = 2 * 12.011 + 4 * 1.008 + 2 * 15.999. = 60.052.
Answer:p-hydroxybenzaldehyde is stronger acid to phenol
para-cyanophenol is stronger acid to meta-cyanophenol
o-fluorophenol is stronger acid to p-fluorophenol.
Explanation:
The PKa tool relative to Ph are used to contrast the pairs.
The pKa of phenol is 10. The pKa of p-hydroxybenzaldehyde is 9.24
The pKa for meta-cyanophenol is 8.61 and the pKa for para-cyanophenol is 7.95.
The pKa value of o-fluorophenol is 8.7, while that of the p-fluorophenol is 9.9. It's obvious that the inductive effect is more dominant at ortho-position, which results in a more acidic nature
The pKa is the pH value at which a chemical species will accept or donate a proton. The lower the pKa, the stronger the acid and the greater the ability to donate a proton in aqueous solution.