Answer: that all thre water cycle and C is vaporation
Explanation:
An example of accurate but not precise would be 3 people weigh a 10g sample. the weights are 0g, 10g, & 20 grams. the scale is way off but the weights average to the right thing.
precise but not accurate would weighing a 10g sample 3 times and getting 5.5, 5.4, & 5.5. they'e all incredibly similar therefore precise but its nowhere near 10, so not accurate.
neither precise nor accurate would be 3 weights being 10, 20, &30. It averages wrong and is imprecise.
Answer: I have sent the notes to u private
Explanation:
Answer:
- <u>No, you cannot dissolve 4.6 moles of copper sulfate, CuSO₄, in 1750mL of water.</u>
Explanation:
This question is part of a Post-Lab exercise sheet.
Such sheet include the saturation concentrations for several salts.
The saturation concentration of Copper Sulfate, CuSO₄, indicated in the table is 1.380M.
That means that 1.380 moles of copper sulfate is the maximum amount that can be dissolved in one liter of solution.
Find the molar concentration for 4.6 moles of copper sulfate in 1,750 mL of water.
You need to assume that the volume of water (1750mL) is the volume of the solution. This is, that the 4.6 moles of copper sulfate have a negligible volume.
<u>1. Volume in liters:</u>
- V = 1,750 mL × 1 liter / 1,000 mL = 1.75 liter
<u />
<u>2. Molar concentration, molarity, M:</u>
- M = number of moles of solute / volume of solution in liters
- M = 4.6 moles / 1.75 liter = 2.6 M
Since the solution is saturated at 1.380M, you cannot reach the 2.6M concentration, meaning that you cannot dissolve 4.6 moles of copper sulfate, CuSO₄ in 1750mL of water.
Answer: the option 4) 2.0 mL of 10.5 M H₂O₂, where H₂O₂ has a molar mass of 34 g/mol.
Its concentration is 10.5 M.
Explanation:
1) The unit M means molar. It is the molarity of the solution.
Molartity is the concentration of the solution expressed as number of moles of solute per liters of solution.
The formula of molarity, M, is:
M = number of moles of solute / volume of solution in liters
2) 2.0 mL of 10 M H₂SO₄, where H₂SO₄ has a molar mass of 98 g/mol
⇒ concentration is 10 M
3) 5.0 mL of 1.0 M PbSO₄, where PbSO₄ has a molar mass of 303 g/mol
⇒ concentration = 1.0 M
4) 2.0 mL of 10.5 M H₂O₂, where H₂O₂ has a molar mass of 34 g/mol
⇒ concentration is 10.5 M
5) 100 mL of 10 M NaCl, where NaCl has a molar mass of 58 g/mol
⇒ concentration is 10 M