- NH₃: Hydrogen bonds;
- CCl₄: London Dispersion Forces; (a.k.a. Induced dipole)
- HCl: Dipole-dipole Interactions.
<h3>Explanation</h3>
Relative strength of intermolecular forces in small molecules:
Hydrogen bonds > Dipole-dipole interactions > London DIspersion Forces.
It takes two conditions for molecules in a substance to form <em>hydrogen bonds</em>.
- They shall contain at least one of the three bonds: H-F, O-H, or N-H.
- They shall contain at least one lone pair of electrons.
NH₃ contains N-H bonds. The central nitrogen atom in an NH₃ molecule has one lone pair of electrons. NH₃ meets both conditions; it is capable of forming hydrogen bonds.
CCl₄ molecules are nonpolar. The molecule has a tetrahedral geometry. Dipole from the polar C-Cl bonds cancel out due to symmetry. The molecule is nonpolar overall. As a result, only London Dispersion Force is possible between CCl₄ molecules.
HCl molecules are polar. The H-Cl bond is fairly polar. The HCl molecule is asymmetric, such that the dipole won't cancel out. The molecule is overall polar. Both dipole-dipole interactions and London Dispersion Force are possible between HCl molecules. However, dipole-dipole interactions are most predominant among the two.
Answer:
the amount of soduim phosphate is will be 52 percemt
Hi there
Steps are
Pretreatment
Reductive leaching
Precipitating of Ni
Precipitation of Co
Extraction of Mn^2+
Precipitating of Li
Hope this helped!