Answer: it never changes.
Step-by-step explanation: have a nice day
<span> i'm going to be slightly extra careful in showing each step. specific, ln [n / (n+a million) ]= ln n - ln(n+a million). So, we've sum(n=a million to infinity) ln [n / (n+a million) ] = lim(ok--> infinity) sum(n=a million to ok) ln [n / (n+a million) ] = lim(ok--> infinity) sum(n=a million to ok) [ln n - ln(n+a million)] = lim(ok--> infinity) (ln a million - ln 2) + (ln 2 - ln 3) + ... + (ln ok - ln(ok+a million)) = lim(ok--> infinity) (ln a million - ln(ok+a million)), for the reason that fairly much all the words cancel one yet another. Now, ln a million = 0 and lim(ok--> infinity) ln(ok+a million) is countless. So, the sum diverges to -infinity. IM NOT COMPLETELY SURE
</span>
Answer:
-13
Step-by-step explanation:
The more negative the number, the colder it is
-13 is more negative than -10
-13 < -10
-13 is colder
Step-by-step explanation:
3/4 of 12
3/4 × 12 = 9
6/7 of 49
6/7 × 49 = 42
2/3 × 27 = 18
3/8 x 16 = 6
Answer:
1 - If method I is used, population of generalization will include all those people who may have varying exercising habits or routines. They may or may not have a regular excersing habit. In his case sample is taken from a more diverse population
2 - Population of generalization will include people who will have similar excersing routines and habits if method II is used since sample is choosen from a specific population
Step-by-step explanation:
Past excercising habits may affect the change in intensity to a targeted excersise in different manner. So in method I a greater diversity is included and result of excersing with or without a trainer will account for greater number of variables than method II.