Answer:
Water is not a good solvent choice.
Explanation:
While water is good solvent because of its polotiry. Water is not good for the recrystallization process becuase being a good recystallization solvent means that a compound must dissolves easily when the solvent is warm, but that is less soluble at room temperature or when cooled in an ice bath. Water has the dissolves when warm part down. But for the cooled part which is the most important it can not do.
Hey there!
C₅H₅ + Fe → Fe(C₅H₅)₂
Put a coefficient of 2 in front of C₅H₅ on the left side because there is a subscript of 2 after C₅H₅ in parenthesis on the right.
2C₅H₅ + Fe → Fe(C₅H₅)₂
Fe (iron) is already balanced since there is one on each side, so we don't need to change anything for that.
This is a synthesis reaction because two reactants, C₅H₅ and Fe, are yielding a single product, Fe(C₅H₅)₂.
Hope this helps!
The de Broglie hypothesis proposed that all particles have wave-like properties, with the wavelength being inversely proportional to the velocity of the particle.
Therefore as the velocity (speed in this question) increases, the wavelength *decreases*.
Answer:
λ = 6.5604 x 1016 nm
Explanation:
Given Data:
The energy of the red line in Hydrogen Spectra = 3.03 x 10-19
Formula to calculate Wave length
E= hv
Where E is Energy
h is Planks Constant = 6.626 x 10–34 J s
v is frequency
In turn
v= c/ λ
where c is speed of light = 3.00 x 108 m s–1
λ is wavelength = to find
Solution:
Formula to be Used:
E= hv………………………… (1)
Putting the value v in equation 1
E= h c/ λ…………………… (2)
Put the value in equation 2
3.03 x 10-19 J = (6.626 x 10–34 J s) x (3.00 x 108 m s–1) / λ ……………………….(3)
By rearranging equation 3
λ = (6.626 x 10–34 J s) x (3.00 x 108 m s–1) /3.03 x 10-19 J
λ = 6.5604 x 107 m
The answer is in “m”
So we have to convert it into nm
So for this to convert “m” to “nm” multiply the answer with 109
λ = 6.5604 x 107 x 109
λ = 6.5604 x 1016 nm
Scientific Notation Is Basically The Shorthand For Writing Numbers. Scientists Use It When They Want To Write Numbers That Are Very Big Or Very Small.