1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenKa [72]
4 years ago
13

Seventy percent of all vehicles examined at a certain emissions inspection station pass the inspection. Assuming that successive

vehicles pass or fail independently of one another, calculate the following probabilities:
(a) P(all of the next three vehicles inspected pass)
(b) P(at least one of the next three inspected fails)
(c) P(exactly one of the next three inspected passes)
(d) P(at most one of the next three vehicles inspected passes)
(e) Given that at least one of the next three vehicles p
Mathematics
2 answers:
sukhopar [10]4 years ago
6 0

Answer:

a) The probability that all of the next three vehicles inspected pass is 0.343

b) The probability that at least one of the next three inspected fails is 0.657

c) The probability that exactly one of the next three vehicles inspected passes is 0.189

d) The probability of at most one of the next three vehicles inspected passes is 0.216

e) The probability that they all pass given that at least one of the next three vehicle pass is 0.343

Step-by-step explanation:

This is a binomial distribution problem.

Probability of success which is passing (p) = 70% = \frac{7}{10}

Probability of failing (q) = 1 - p = 1 - \frac{7}{10}  = \frac{3}{10}

Based on the options,  number of trial (n) = 3

The formula for binomial distribution problem is given as:

P(X=x) = (nCx) p^{x} q^{n-x}

nCx means n combination x

a) P(all of the next three vehicles inspected pass)

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X=3) = (3C3) 0.7^{3} 0.3^{3-3}\\P(X=3) = (\frac{3!}{3!(3-3)!} ) 0.7^{3} 0.3^{3-3}\\P(X=3) = (\frac{3!}{3!0!} ) 0.7^{3} 0.3^{0}\\P(X=3) = 1 * 0.7^{3}  * 1\\P(X=3) = 1 * 0.7^{3}  * 1\\P(X=3) = 1 * 0.343 * 1\\P(X=3) = 0.343

b) P(at least one of the next three inspected fails)

Probability that at least one of the vehicle means that more that not less than one vehicle fail. So it could be one fail, two fail or three fail which means probability of exactly two pass or less than two pass.

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X\leq 2) = P(X=0) + P(X=1) + P(X=2)\\But P(X=1) = 0.189 \\P(X=0) = 0.027\\P(X=2) = 0.441\\P(X\leq 2) = 0.027 + 0.189 + 0.441\\P(X\leq 2) = 0.657

(c) P(exactly one of the next three inspected passes)

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X=1) = (3C1) 0.7^{1} 0.3^{3-1}\\P(X=1) = (\frac{3!}{1!(3-1)!} ) 0.7^{1} 0.3^{3-1}\\P(X=1) = (\frac{3!}{1!2!} ) 0.7^{1} 0.3^{2}\\P(X=1) = (\frac{6}{1*2} ) 0.7^{1} 0.3^{2}\\P(X=1) = (\frac{6}{2} ) 0.7^{1} 0.3^{2}\\P(X=1) = 3* 0.7^{1} 0.3^{2}\\P(X=1) = 3 * 0.7 * 0.09\\P(X=1) = 0.189

(d) P(at most one of the next three vehicles inspected passes)

At most one means not more than one vehicles pass, that is number of vehicles less than 1

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X\leq 1) = P(X=0) + P(X=1)\\But P(X=1) = 0.189 \\P(X=0) = (3C0) 0.7^{0} 0.3^{3-0}\\P(X=0) = (\frac{3!}{0!(3-0)!} ) 0.7^{0} 0.3^{3-0}\\P(X=0) = (\frac{3!}{0!3!} ) 0.7^{0} 0.3^{3}\\P(X=0) = (\frac{6}{6} ) 0.7^{0} 0.3^{3}\\P(X=0) = 1 * 0.7^{0} 0.3^{3}\\P(X=0) = 1 * 1 * 0.027\\P(X=0) = 0.027\\\\P(X\leq 1) = P(X=0) + P(X=1)\\But P(X=1) = 0.189\\P(X=0) = 0.027\\P(X\leq 1) = 0.027 + 0.189\\P(X\leq 1) = 0.216

(e) Given that at least one of the next three vehicles passes inspection, what is the probability that all three pass (a conditional probability)?

Formula for conditional probability is given as:

P(B|A) = \frac{P(A n B)}{P(A)}

where

B is the probability that they all passes

A is the given probability that at least one of the next three vehicle passes

We need to find the probability for A.

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X\geq 1) = P(X=1) + P(X=2) + P(X =3)\\But\\P(X=1) = 0.441\\P(X=3) = 0.343\\P(X=2) = ?\\P(X=2) = (\frac{3!}{2!(3-2)!} ) 0.7^{2} 0.3^{3-2}\\P(X=2) = (\frac{3!}{2!1!} ) 0.7^{2} 0.3^{1}\\P(X=2) = (\frac{6}{2*1} ) 0.7^{2} 0.3^{1}\\P(X=2) = (\frac{6}{2} ) 0.7^{2} 0.3^{1}\\P(X=2) = 3 * 0.49 * 0.3\\P(X=2) = 0.441\\P(X\geq 1) = P(X=1) + P(X=2) + P(X =3)\\P(X\geq 1) = 0.189 + 0.441 + 0.343\\P(X\geq 1) =0.973

Probability that they all pass = 0.343

Probability that at least one pass = 0.973

P(B|A) = \frac{P(A n B)}{P(A)}\\P(B|A) = \frac{0.343 * 0.973}{0.973} \\P(B|A) = \frac{0.333739}{0.973} \\P(B|A) = 0.343

NeX [460]4 years ago
3 0

Answer:

(a) 0.343

(b) 0.657

(c) 0.189

(d) 0.216

(e) 0.353

Step-by-step explanation:

Let P(a vehicle passing the test) = p

                        p = \frac{70}{100} = 0.7  

Let P(a vehicle not passing the test) = q

                         q = 1 - p

                         q = 1 - 0.7 = 0.3

(a) P(all of the next three vehicles inspected pass) = P(ppp)

                           = 0.7 × 0.7 × 0.7

                           = 0.343

(b) P(at least one of the next three inspected fails) = P(qpp or qqp or pqp or pqq or ppq or qpq or qqq)

      = (0.3 × 0.7 × 0.7) + (0.3 × 0.3 × 0.7) + (0.7 × 0.3 × 0.7) + (0.7 × 0.3 × 0.3) + (0.7 × 0.7 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.3)

      = 0.147 + 0.063 + 0.147 + 0.063 + 0.147 + 0.063 + 0.027

      = 0.657

(c) P(exactly one of the next three inspected passes) = P(pqq or qpq or qqp)

                 =  (0.7 × 0.3 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.7)

                 = 0.063 + 0.063 + 0.063

                 = 0.189

(d) P(at most one of the next three vehicles inspected passes) = P(pqq or qpq or qqp or qqq)

                 =  (0.7 × 0.3 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.7) + (0.3 × 0.3 × 0.3)

                 = 0.063 + 0.063 + 0.063 + 0.027

                 = 0.216

(e) Given that at least one of the next 3 vehicles passes inspection, what is the probability that all 3 pass (a conditional probability)?

P(at least one of the next three vehicles inspected passes) = P(ppp or ppq or pqp or qpp or pqq or qpq or qqp)

=  (0.7 × 0.7 × 0.7) + (0.7 × 0.7 × 0.3) + (0.7 × 0.3 × 0.7) + (0.3 × 0.7 × 0.7) + (0.7 × 0.3 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.7)

= 0.343 + 0.147 + 0.147 + 0.147 + 0.063 + 0.063 + 0.063

                  = 0.973  

With the condition that at least one of the next 3 vehicles passes inspection, the probability that all 3 pass is,

                         = \frac{P(all\ of\ the\ next\ three\ vehicles\ inspected\ pass)}{P(at\ least\ one\ of\ the\ next\ three\ vehicles\ inspected\ passes)}

                         = \frac{0.343}{0.973}

                         = 0.353

You might be interested in
One bought 200 oranges and 220 candles at a cost of £65.40. The other bought 210 oranges and 200 candles at a cost of £63.40. Th
mamaluj [8]

Answer: i am not sure'

my-step explanation:

4 0
3 years ago
I need solving 4.8 (x+4)=2.6
victus00 [196]
<span>4.8 (x+4)=2.6
Use distributive property
4.8x + 19.2= 2.6
Subtract 19.2 from both sides
4.8x = -16.6
Divide 4.8 on both sides so that the only thing remaining on the left side is the variable x.
Final Answer: x = -3.458</span>
7 0
3 years ago
Read 2 more answers
The sum of two numbers is - 10. If one number is subtracted from the other, their difference is - 8. Find the numbers.
Lera25 [3.4K]

Answer:

the sume of two numbers is 2. if one number is subtracted from the other, their difference is 8. find the numbers---->

Step-by-step explanation:

X+Y=2

X-Y=8

If you subtract X+Y with X-Y, you get 2y, and so that equals 2-8, that is -6.

2y=-6

y=(-6)/2

y=-3

-3+X=2

x=2+3

x=5 and y=-8

Check

-3+5=2

5-(-3)=8

3 0
3 years ago
The time it takes to fly from Paris to London is normally distributed. If the mean flight time is 80 minutes with a standard dev
Simora [160]

Answer:

13.60%

Step-by-step explanation:

Just took the test

5 0
3 years ago
Andrew bought 3 baseball cards for $240. After a few months, he got an offer from his friend Jack to buy the first card for doub
Dominik [7]
First we define variables:
 x = first card original value
 y = second card original value
 z = third card original value
 We write the system of equations:
 Andrew bought 3 baseball cards for $ 240:
 x + y + z = 240
 the first card (at its original value) along with the second card (at its original price) and got $ 320:
 2x + y = 320
 the first card (at its original value) card along with the third card (at its original price) would have only got him $ 280:
 2x + z = 280
 Solving the system we have:
 x = 120
 y = 80
 z = 40
 Answer:
 
The original prices for each of the 3 baseball cards is:
 
(120, 80, 40)
8 0
3 years ago
Other questions:
  • Jack and Jillian sell apples at a produce stand. Jillian earns $2 for each bag of apples she sells. At the end of the week, Jack
    15·2 answers
  • 6 more than the difference of b and 5
    15·2 answers
  • 87 less than the quotient of an unknown number and 43 is -75.
    11·1 answer
  • Y is inversely proportional to (x + 2)
    7·2 answers
  • If 3x−y=12, what is the value of 8x/2y ? A) 212 B) 44 C) 82 D) The value cannot be determined from the information given.
    14·1 answer
  • What is the simplest form of fraction ​
    15·1 answer
  • There are ten cards, each has a different number on it, from 1 to 10. Sam took one card, and it was 5 on it. If he takes one of
    8·2 answers
  • 4. Which function represents exponential decay?
    9·1 answer
  • Evaluate. Express your answer in scientific notation.<br> 4.36 x 104 – 41, 600
    12·1 answer
  • Sally gets $8.00 each week for allowance. She wants to purchase a used bicycle that costs $24.00. She also wants to donate $8.00
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!