1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenKa [72]
3 years ago
13

Seventy percent of all vehicles examined at a certain emissions inspection station pass the inspection. Assuming that successive

vehicles pass or fail independently of one another, calculate the following probabilities:
(a) P(all of the next three vehicles inspected pass)
(b) P(at least one of the next three inspected fails)
(c) P(exactly one of the next three inspected passes)
(d) P(at most one of the next three vehicles inspected passes)
(e) Given that at least one of the next three vehicles p
Mathematics
2 answers:
sukhopar [10]3 years ago
6 0

Answer:

a) The probability that all of the next three vehicles inspected pass is 0.343

b) The probability that at least one of the next three inspected fails is 0.657

c) The probability that exactly one of the next three vehicles inspected passes is 0.189

d) The probability of at most one of the next three vehicles inspected passes is 0.216

e) The probability that they all pass given that at least one of the next three vehicle pass is 0.343

Step-by-step explanation:

This is a binomial distribution problem.

Probability of success which is passing (p) = 70% = \frac{7}{10}

Probability of failing (q) = 1 - p = 1 - \frac{7}{10}  = \frac{3}{10}

Based on the options,  number of trial (n) = 3

The formula for binomial distribution problem is given as:

P(X=x) = (nCx) p^{x} q^{n-x}

nCx means n combination x

a) P(all of the next three vehicles inspected pass)

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X=3) = (3C3) 0.7^{3} 0.3^{3-3}\\P(X=3) = (\frac{3!}{3!(3-3)!} ) 0.7^{3} 0.3^{3-3}\\P(X=3) = (\frac{3!}{3!0!} ) 0.7^{3} 0.3^{0}\\P(X=3) = 1 * 0.7^{3}  * 1\\P(X=3) = 1 * 0.7^{3}  * 1\\P(X=3) = 1 * 0.343 * 1\\P(X=3) = 0.343

b) P(at least one of the next three inspected fails)

Probability that at least one of the vehicle means that more that not less than one vehicle fail. So it could be one fail, two fail or three fail which means probability of exactly two pass or less than two pass.

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X\leq 2) = P(X=0) + P(X=1) + P(X=2)\\But P(X=1) = 0.189 \\P(X=0) = 0.027\\P(X=2) = 0.441\\P(X\leq 2) = 0.027 + 0.189 + 0.441\\P(X\leq 2) = 0.657

(c) P(exactly one of the next three inspected passes)

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X=1) = (3C1) 0.7^{1} 0.3^{3-1}\\P(X=1) = (\frac{3!}{1!(3-1)!} ) 0.7^{1} 0.3^{3-1}\\P(X=1) = (\frac{3!}{1!2!} ) 0.7^{1} 0.3^{2}\\P(X=1) = (\frac{6}{1*2} ) 0.7^{1} 0.3^{2}\\P(X=1) = (\frac{6}{2} ) 0.7^{1} 0.3^{2}\\P(X=1) = 3* 0.7^{1} 0.3^{2}\\P(X=1) = 3 * 0.7 * 0.09\\P(X=1) = 0.189

(d) P(at most one of the next three vehicles inspected passes)

At most one means not more than one vehicles pass, that is number of vehicles less than 1

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X\leq 1) = P(X=0) + P(X=1)\\But P(X=1) = 0.189 \\P(X=0) = (3C0) 0.7^{0} 0.3^{3-0}\\P(X=0) = (\frac{3!}{0!(3-0)!} ) 0.7^{0} 0.3^{3-0}\\P(X=0) = (\frac{3!}{0!3!} ) 0.7^{0} 0.3^{3}\\P(X=0) = (\frac{6}{6} ) 0.7^{0} 0.3^{3}\\P(X=0) = 1 * 0.7^{0} 0.3^{3}\\P(X=0) = 1 * 1 * 0.027\\P(X=0) = 0.027\\\\P(X\leq 1) = P(X=0) + P(X=1)\\But P(X=1) = 0.189\\P(X=0) = 0.027\\P(X\leq 1) = 0.027 + 0.189\\P(X\leq 1) = 0.216

(e) Given that at least one of the next three vehicles passes inspection, what is the probability that all three pass (a conditional probability)?

Formula for conditional probability is given as:

P(B|A) = \frac{P(A n B)}{P(A)}

where

B is the probability that they all passes

A is the given probability that at least one of the next three vehicle passes

We need to find the probability for A.

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X\geq 1) = P(X=1) + P(X=2) + P(X =3)\\But\\P(X=1) = 0.441\\P(X=3) = 0.343\\P(X=2) = ?\\P(X=2) = (\frac{3!}{2!(3-2)!} ) 0.7^{2} 0.3^{3-2}\\P(X=2) = (\frac{3!}{2!1!} ) 0.7^{2} 0.3^{1}\\P(X=2) = (\frac{6}{2*1} ) 0.7^{2} 0.3^{1}\\P(X=2) = (\frac{6}{2} ) 0.7^{2} 0.3^{1}\\P(X=2) = 3 * 0.49 * 0.3\\P(X=2) = 0.441\\P(X\geq 1) = P(X=1) + P(X=2) + P(X =3)\\P(X\geq 1) = 0.189 + 0.441 + 0.343\\P(X\geq 1) =0.973

Probability that they all pass = 0.343

Probability that at least one pass = 0.973

P(B|A) = \frac{P(A n B)}{P(A)}\\P(B|A) = \frac{0.343 * 0.973}{0.973} \\P(B|A) = \frac{0.333739}{0.973} \\P(B|A) = 0.343

NeX [460]3 years ago
3 0

Answer:

(a) 0.343

(b) 0.657

(c) 0.189

(d) 0.216

(e) 0.353

Step-by-step explanation:

Let P(a vehicle passing the test) = p

                        p = \frac{70}{100} = 0.7  

Let P(a vehicle not passing the test) = q

                         q = 1 - p

                         q = 1 - 0.7 = 0.3

(a) P(all of the next three vehicles inspected pass) = P(ppp)

                           = 0.7 × 0.7 × 0.7

                           = 0.343

(b) P(at least one of the next three inspected fails) = P(qpp or qqp or pqp or pqq or ppq or qpq or qqq)

      = (0.3 × 0.7 × 0.7) + (0.3 × 0.3 × 0.7) + (0.7 × 0.3 × 0.7) + (0.7 × 0.3 × 0.3) + (0.7 × 0.7 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.3)

      = 0.147 + 0.063 + 0.147 + 0.063 + 0.147 + 0.063 + 0.027

      = 0.657

(c) P(exactly one of the next three inspected passes) = P(pqq or qpq or qqp)

                 =  (0.7 × 0.3 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.7)

                 = 0.063 + 0.063 + 0.063

                 = 0.189

(d) P(at most one of the next three vehicles inspected passes) = P(pqq or qpq or qqp or qqq)

                 =  (0.7 × 0.3 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.7) + (0.3 × 0.3 × 0.3)

                 = 0.063 + 0.063 + 0.063 + 0.027

                 = 0.216

(e) Given that at least one of the next 3 vehicles passes inspection, what is the probability that all 3 pass (a conditional probability)?

P(at least one of the next three vehicles inspected passes) = P(ppp or ppq or pqp or qpp or pqq or qpq or qqp)

=  (0.7 × 0.7 × 0.7) + (0.7 × 0.7 × 0.3) + (0.7 × 0.3 × 0.7) + (0.3 × 0.7 × 0.7) + (0.7 × 0.3 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.7)

= 0.343 + 0.147 + 0.147 + 0.147 + 0.063 + 0.063 + 0.063

                  = 0.973  

With the condition that at least one of the next 3 vehicles passes inspection, the probability that all 3 pass is,

                         = \frac{P(all\ of\ the\ next\ three\ vehicles\ inspected\ pass)}{P(at\ least\ one\ of\ the\ next\ three\ vehicles\ inspected\ passes)}

                         = \frac{0.343}{0.973}

                         = 0.353

You might be interested in
(HELP AS FAST AS YOU CAN)!!! This dot plot is symmetric, and the data set has no
Brums [2.3K]

Answer:

d. interquartile range

Step-by-step explanation:

the iqr measures the first, second, and third quartile, and the median.

8 0
3 years ago
A window in the shape of a rectangle is pictured.
Murrr4er [49]

Answer:

hmm

Step-by-step explanation:

5 0
3 years ago
In chemistry class 18 liters of 30% alcohol solution must be mixed with 20% solution to get 14% solution how many liters of 20%
alexdok [17]
If you are mixing a 30% solution with a 20% solution to obtain a 14% solution, you will never obtain a 14% solution.

5 0
3 years ago
Please help me!!!!!!!!!!!!
insens350 [35]
How I can’t bring them to you
3 0
3 years ago
Surface area of a cylinder radius=10 height=15
Virty [35]

Answer:

1570

Step-by-step explanation:

the formula for surface area of a cylinder is:

A= 2πrh + 2πr²

π aka pi = 3.14

r = 10

h = 15

so now plug in the numbers

A = 2(3.14)(10)(15) + 2(3.14)(10²)

A = 942 + 2(3.14)(100)

A = 942 + 628

A = 1570

5 0
3 years ago
Other questions:
  • The circles are identical. What is the circumference of each circle? Circle 1: radius of 2x; Circle 2: diameter of 2x+3. A. 3/2
    7·1 answer
  • 2) Use the rules of exponents to evaluate or simplify. Write without negative exponents. 1 / 4^-2 = ____
    6·2 answers
  • What is the exact solution to the equation 10^x=23 ?
    5·2 answers
  • What is the factored form of 30w+48
    13·1 answer
  • which measure of central tendancy is found by calculating the sum of all data in the set divided by the number of data values in
    11·1 answer
  • A 12-oz can of soda pop costs eighty-nine cents. A 2.00 L bottle of the same variety of soda pop costs $2.29. How many times mor
    14·1 answer
  • The ratio of enlisted men to officers in a division is 25 to 1.
    6·1 answer
  • What is 3 raised to the power of 1?
    11·2 answers
  • Tina says that 3.4 x 105 is greater than 8.25 x 104. Is she correct? Justify your answer.
    6·2 answers
  • Please help!!! I will give brainliest. Just please try your best.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!