1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenKa [72]
3 years ago
13

Seventy percent of all vehicles examined at a certain emissions inspection station pass the inspection. Assuming that successive

vehicles pass or fail independently of one another, calculate the following probabilities:
(a) P(all of the next three vehicles inspected pass)
(b) P(at least one of the next three inspected fails)
(c) P(exactly one of the next three inspected passes)
(d) P(at most one of the next three vehicles inspected passes)
(e) Given that at least one of the next three vehicles p
Mathematics
2 answers:
sukhopar [10]3 years ago
6 0

Answer:

a) The probability that all of the next three vehicles inspected pass is 0.343

b) The probability that at least one of the next three inspected fails is 0.657

c) The probability that exactly one of the next three vehicles inspected passes is 0.189

d) The probability of at most one of the next three vehicles inspected passes is 0.216

e) The probability that they all pass given that at least one of the next three vehicle pass is 0.343

Step-by-step explanation:

This is a binomial distribution problem.

Probability of success which is passing (p) = 70% = \frac{7}{10}

Probability of failing (q) = 1 - p = 1 - \frac{7}{10}  = \frac{3}{10}

Based on the options,  number of trial (n) = 3

The formula for binomial distribution problem is given as:

P(X=x) = (nCx) p^{x} q^{n-x}

nCx means n combination x

a) P(all of the next three vehicles inspected pass)

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X=3) = (3C3) 0.7^{3} 0.3^{3-3}\\P(X=3) = (\frac{3!}{3!(3-3)!} ) 0.7^{3} 0.3^{3-3}\\P(X=3) = (\frac{3!}{3!0!} ) 0.7^{3} 0.3^{0}\\P(X=3) = 1 * 0.7^{3}  * 1\\P(X=3) = 1 * 0.7^{3}  * 1\\P(X=3) = 1 * 0.343 * 1\\P(X=3) = 0.343

b) P(at least one of the next three inspected fails)

Probability that at least one of the vehicle means that more that not less than one vehicle fail. So it could be one fail, two fail or three fail which means probability of exactly two pass or less than two pass.

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X\leq 2) = P(X=0) + P(X=1) + P(X=2)\\But P(X=1) = 0.189 \\P(X=0) = 0.027\\P(X=2) = 0.441\\P(X\leq 2) = 0.027 + 0.189 + 0.441\\P(X\leq 2) = 0.657

(c) P(exactly one of the next three inspected passes)

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X=1) = (3C1) 0.7^{1} 0.3^{3-1}\\P(X=1) = (\frac{3!}{1!(3-1)!} ) 0.7^{1} 0.3^{3-1}\\P(X=1) = (\frac{3!}{1!2!} ) 0.7^{1} 0.3^{2}\\P(X=1) = (\frac{6}{1*2} ) 0.7^{1} 0.3^{2}\\P(X=1) = (\frac{6}{2} ) 0.7^{1} 0.3^{2}\\P(X=1) = 3* 0.7^{1} 0.3^{2}\\P(X=1) = 3 * 0.7 * 0.09\\P(X=1) = 0.189

(d) P(at most one of the next three vehicles inspected passes)

At most one means not more than one vehicles pass, that is number of vehicles less than 1

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X\leq 1) = P(X=0) + P(X=1)\\But P(X=1) = 0.189 \\P(X=0) = (3C0) 0.7^{0} 0.3^{3-0}\\P(X=0) = (\frac{3!}{0!(3-0)!} ) 0.7^{0} 0.3^{3-0}\\P(X=0) = (\frac{3!}{0!3!} ) 0.7^{0} 0.3^{3}\\P(X=0) = (\frac{6}{6} ) 0.7^{0} 0.3^{3}\\P(X=0) = 1 * 0.7^{0} 0.3^{3}\\P(X=0) = 1 * 1 * 0.027\\P(X=0) = 0.027\\\\P(X\leq 1) = P(X=0) + P(X=1)\\But P(X=1) = 0.189\\P(X=0) = 0.027\\P(X\leq 1) = 0.027 + 0.189\\P(X\leq 1) = 0.216

(e) Given that at least one of the next three vehicles passes inspection, what is the probability that all three pass (a conditional probability)?

Formula for conditional probability is given as:

P(B|A) = \frac{P(A n B)}{P(A)}

where

B is the probability that they all passes

A is the given probability that at least one of the next three vehicle passes

We need to find the probability for A.

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X\geq 1) = P(X=1) + P(X=2) + P(X =3)\\But\\P(X=1) = 0.441\\P(X=3) = 0.343\\P(X=2) = ?\\P(X=2) = (\frac{3!}{2!(3-2)!} ) 0.7^{2} 0.3^{3-2}\\P(X=2) = (\frac{3!}{2!1!} ) 0.7^{2} 0.3^{1}\\P(X=2) = (\frac{6}{2*1} ) 0.7^{2} 0.3^{1}\\P(X=2) = (\frac{6}{2} ) 0.7^{2} 0.3^{1}\\P(X=2) = 3 * 0.49 * 0.3\\P(X=2) = 0.441\\P(X\geq 1) = P(X=1) + P(X=2) + P(X =3)\\P(X\geq 1) = 0.189 + 0.441 + 0.343\\P(X\geq 1) =0.973

Probability that they all pass = 0.343

Probability that at least one pass = 0.973

P(B|A) = \frac{P(A n B)}{P(A)}\\P(B|A) = \frac{0.343 * 0.973}{0.973} \\P(B|A) = \frac{0.333739}{0.973} \\P(B|A) = 0.343

NeX [460]3 years ago
3 0

Answer:

(a) 0.343

(b) 0.657

(c) 0.189

(d) 0.216

(e) 0.353

Step-by-step explanation:

Let P(a vehicle passing the test) = p

                        p = \frac{70}{100} = 0.7  

Let P(a vehicle not passing the test) = q

                         q = 1 - p

                         q = 1 - 0.7 = 0.3

(a) P(all of the next three vehicles inspected pass) = P(ppp)

                           = 0.7 × 0.7 × 0.7

                           = 0.343

(b) P(at least one of the next three inspected fails) = P(qpp or qqp or pqp or pqq or ppq or qpq or qqq)

      = (0.3 × 0.7 × 0.7) + (0.3 × 0.3 × 0.7) + (0.7 × 0.3 × 0.7) + (0.7 × 0.3 × 0.3) + (0.7 × 0.7 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.3)

      = 0.147 + 0.063 + 0.147 + 0.063 + 0.147 + 0.063 + 0.027

      = 0.657

(c) P(exactly one of the next three inspected passes) = P(pqq or qpq or qqp)

                 =  (0.7 × 0.3 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.7)

                 = 0.063 + 0.063 + 0.063

                 = 0.189

(d) P(at most one of the next three vehicles inspected passes) = P(pqq or qpq or qqp or qqq)

                 =  (0.7 × 0.3 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.7) + (0.3 × 0.3 × 0.3)

                 = 0.063 + 0.063 + 0.063 + 0.027

                 = 0.216

(e) Given that at least one of the next 3 vehicles passes inspection, what is the probability that all 3 pass (a conditional probability)?

P(at least one of the next three vehicles inspected passes) = P(ppp or ppq or pqp or qpp or pqq or qpq or qqp)

=  (0.7 × 0.7 × 0.7) + (0.7 × 0.7 × 0.3) + (0.7 × 0.3 × 0.7) + (0.3 × 0.7 × 0.7) + (0.7 × 0.3 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.7)

= 0.343 + 0.147 + 0.147 + 0.147 + 0.063 + 0.063 + 0.063

                  = 0.973  

With the condition that at least one of the next 3 vehicles passes inspection, the probability that all 3 pass is,

                         = \frac{P(all\ of\ the\ next\ three\ vehicles\ inspected\ pass)}{P(at\ least\ one\ of\ the\ next\ three\ vehicles\ inspected\ passes)}

                         = \frac{0.343}{0.973}

                         = 0.353

You might be interested in
15% of 95? and 3 1/2% of 100?
NISA [10]

Answer:

15% of 95-14.25

3 1/2% of 100-3.5

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Write two equivalent ratios 3to5??
vesna_86 [32]

Answer:

3 : 5

6 : 10

9 : 15

12 : 20

15 : 25

7 0
3 years ago
Eugenia walked all the way to school at 3 mph then realized she forgot her math book (how could she?!), so she ran back at 7 mph
kondor19780726 [428]

Let us say distance between Eugenia's home and school is x miles.

Speed of Eugenia when she walked from home to school = 3 mph

Speed of Eugenia when she walked from school to home = 7 mph

Total time taken = 45 minutes or 0.75 hours

We know that the speed distance formula is given by:

speed=\frac{distance}{time}

time=\frac{distance}{speed}

Time taken by Eugenia when she walked from home to school = x/3 hours

Time taken by Eugenia when she walked from school to home = x/7 hours

Total time taken = x/3+x/7

So forming an equation we have,

\frac{x}{3}+\frac{x}{7}=0.75

Taking lcd of 7 and 3 as 21,

\frac{7x}{21}+\frac{3x}{21}=0.75

\frac{10x}{21}=0.75

10x=15.75

Dividing both sides by 10 , we have

x= 1.575

Answer: So we can say that the distance between Eugenia's house and school is 1.575 miles.




4 0
3 years ago
Anyone answering the coordinates subtraction can get there 100 points here.
Sholpan [36]

Answer:

c = -6

d = 2

Step-by-step explanation:

After reflection about the x-axis:

A --> A'

(x,y) --> (x,-y)

(2,3) --> (2,-3)

(4,3) --> (4,-3)

(2,6) --> (2,-6)

After translation:

(2 + c, -6 + d) --> (-4, -4)

2+c = -4

c = -6

-6+d = -4

d = 2

3 0
3 years ago
Read 2 more answers
olivia purchases gifts for her mom and grandma for mother's day. The first is a pair of sunglasses for $16.35 and the second is
PolarNik [594]
$23.40

Since we know how much Olivia spent total, and we know how much she spent on the sunglasses, we just subtract 16.35 from 39.74, and the final answer is 23.40
3 0
3 years ago
Read 2 more answers
Other questions:
  • Find the measure of the missing angle in the triangle shown 49° 57°
    12·2 answers
  • Amanda and Alexis live 4 miles apart. They decide to start walking toward each other’s houses at the same time. Amanda walks at
    11·2 answers
  • Point (5 5/8, 2 1/4) lies on a line that represents a proportional relationship. Write an equation for this relationship. What i
    15·1 answer
  • The table shows the favourite colour of 400 people. Complete the table and draw a pie chart to represent this information? Maths
    14·1 answer
  • Shelley’s pet food store sold one customer 5 peanut butter biscuits for $3. She sold another customer 7 beef treats for $4.20.
    13·2 answers
  • A spherical balloon currently has a radius of 19cm. If the radius is still growing at a rate of 5cm or minute, at what rate is a
    11·1 answer
  • Solve for x in the following equation:<br><br> x/a = y/b
    11·1 answer
  • A 6 by 10 inch rectangle is dilated by 3. what is the area of the dilated rectangle
    5·1 answer
  • Pls help me i need help with this
    13·1 answer
  • GIVING BRAINLIST ASAP
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!