1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenKa [72]
4 years ago
13

Seventy percent of all vehicles examined at a certain emissions inspection station pass the inspection. Assuming that successive

vehicles pass or fail independently of one another, calculate the following probabilities:
(a) P(all of the next three vehicles inspected pass)
(b) P(at least one of the next three inspected fails)
(c) P(exactly one of the next three inspected passes)
(d) P(at most one of the next three vehicles inspected passes)
(e) Given that at least one of the next three vehicles p
Mathematics
2 answers:
sukhopar [10]4 years ago
6 0

Answer:

a) The probability that all of the next three vehicles inspected pass is 0.343

b) The probability that at least one of the next three inspected fails is 0.657

c) The probability that exactly one of the next three vehicles inspected passes is 0.189

d) The probability of at most one of the next three vehicles inspected passes is 0.216

e) The probability that they all pass given that at least one of the next three vehicle pass is 0.343

Step-by-step explanation:

This is a binomial distribution problem.

Probability of success which is passing (p) = 70% = \frac{7}{10}

Probability of failing (q) = 1 - p = 1 - \frac{7}{10}  = \frac{3}{10}

Based on the options,  number of trial (n) = 3

The formula for binomial distribution problem is given as:

P(X=x) = (nCx) p^{x} q^{n-x}

nCx means n combination x

a) P(all of the next three vehicles inspected pass)

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X=3) = (3C3) 0.7^{3} 0.3^{3-3}\\P(X=3) = (\frac{3!}{3!(3-3)!} ) 0.7^{3} 0.3^{3-3}\\P(X=3) = (\frac{3!}{3!0!} ) 0.7^{3} 0.3^{0}\\P(X=3) = 1 * 0.7^{3}  * 1\\P(X=3) = 1 * 0.7^{3}  * 1\\P(X=3) = 1 * 0.343 * 1\\P(X=3) = 0.343

b) P(at least one of the next three inspected fails)

Probability that at least one of the vehicle means that more that not less than one vehicle fail. So it could be one fail, two fail or three fail which means probability of exactly two pass or less than two pass.

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X\leq 2) = P(X=0) + P(X=1) + P(X=2)\\But P(X=1) = 0.189 \\P(X=0) = 0.027\\P(X=2) = 0.441\\P(X\leq 2) = 0.027 + 0.189 + 0.441\\P(X\leq 2) = 0.657

(c) P(exactly one of the next three inspected passes)

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X=1) = (3C1) 0.7^{1} 0.3^{3-1}\\P(X=1) = (\frac{3!}{1!(3-1)!} ) 0.7^{1} 0.3^{3-1}\\P(X=1) = (\frac{3!}{1!2!} ) 0.7^{1} 0.3^{2}\\P(X=1) = (\frac{6}{1*2} ) 0.7^{1} 0.3^{2}\\P(X=1) = (\frac{6}{2} ) 0.7^{1} 0.3^{2}\\P(X=1) = 3* 0.7^{1} 0.3^{2}\\P(X=1) = 3 * 0.7 * 0.09\\P(X=1) = 0.189

(d) P(at most one of the next three vehicles inspected passes)

At most one means not more than one vehicles pass, that is number of vehicles less than 1

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X\leq 1) = P(X=0) + P(X=1)\\But P(X=1) = 0.189 \\P(X=0) = (3C0) 0.7^{0} 0.3^{3-0}\\P(X=0) = (\frac{3!}{0!(3-0)!} ) 0.7^{0} 0.3^{3-0}\\P(X=0) = (\frac{3!}{0!3!} ) 0.7^{0} 0.3^{3}\\P(X=0) = (\frac{6}{6} ) 0.7^{0} 0.3^{3}\\P(X=0) = 1 * 0.7^{0} 0.3^{3}\\P(X=0) = 1 * 1 * 0.027\\P(X=0) = 0.027\\\\P(X\leq 1) = P(X=0) + P(X=1)\\But P(X=1) = 0.189\\P(X=0) = 0.027\\P(X\leq 1) = 0.027 + 0.189\\P(X\leq 1) = 0.216

(e) Given that at least one of the next three vehicles passes inspection, what is the probability that all three pass (a conditional probability)?

Formula for conditional probability is given as:

P(B|A) = \frac{P(A n B)}{P(A)}

where

B is the probability that they all passes

A is the given probability that at least one of the next three vehicle passes

We need to find the probability for A.

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X\geq 1) = P(X=1) + P(X=2) + P(X =3)\\But\\P(X=1) = 0.441\\P(X=3) = 0.343\\P(X=2) = ?\\P(X=2) = (\frac{3!}{2!(3-2)!} ) 0.7^{2} 0.3^{3-2}\\P(X=2) = (\frac{3!}{2!1!} ) 0.7^{2} 0.3^{1}\\P(X=2) = (\frac{6}{2*1} ) 0.7^{2} 0.3^{1}\\P(X=2) = (\frac{6}{2} ) 0.7^{2} 0.3^{1}\\P(X=2) = 3 * 0.49 * 0.3\\P(X=2) = 0.441\\P(X\geq 1) = P(X=1) + P(X=2) + P(X =3)\\P(X\geq 1) = 0.189 + 0.441 + 0.343\\P(X\geq 1) =0.973

Probability that they all pass = 0.343

Probability that at least one pass = 0.973

P(B|A) = \frac{P(A n B)}{P(A)}\\P(B|A) = \frac{0.343 * 0.973}{0.973} \\P(B|A) = \frac{0.333739}{0.973} \\P(B|A) = 0.343

NeX [460]4 years ago
3 0

Answer:

(a) 0.343

(b) 0.657

(c) 0.189

(d) 0.216

(e) 0.353

Step-by-step explanation:

Let P(a vehicle passing the test) = p

                        p = \frac{70}{100} = 0.7  

Let P(a vehicle not passing the test) = q

                         q = 1 - p

                         q = 1 - 0.7 = 0.3

(a) P(all of the next three vehicles inspected pass) = P(ppp)

                           = 0.7 × 0.7 × 0.7

                           = 0.343

(b) P(at least one of the next three inspected fails) = P(qpp or qqp or pqp or pqq or ppq or qpq or qqq)

      = (0.3 × 0.7 × 0.7) + (0.3 × 0.3 × 0.7) + (0.7 × 0.3 × 0.7) + (0.7 × 0.3 × 0.3) + (0.7 × 0.7 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.3)

      = 0.147 + 0.063 + 0.147 + 0.063 + 0.147 + 0.063 + 0.027

      = 0.657

(c) P(exactly one of the next three inspected passes) = P(pqq or qpq or qqp)

                 =  (0.7 × 0.3 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.7)

                 = 0.063 + 0.063 + 0.063

                 = 0.189

(d) P(at most one of the next three vehicles inspected passes) = P(pqq or qpq or qqp or qqq)

                 =  (0.7 × 0.3 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.7) + (0.3 × 0.3 × 0.3)

                 = 0.063 + 0.063 + 0.063 + 0.027

                 = 0.216

(e) Given that at least one of the next 3 vehicles passes inspection, what is the probability that all 3 pass (a conditional probability)?

P(at least one of the next three vehicles inspected passes) = P(ppp or ppq or pqp or qpp or pqq or qpq or qqp)

=  (0.7 × 0.7 × 0.7) + (0.7 × 0.7 × 0.3) + (0.7 × 0.3 × 0.7) + (0.3 × 0.7 × 0.7) + (0.7 × 0.3 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.7)

= 0.343 + 0.147 + 0.147 + 0.147 + 0.063 + 0.063 + 0.063

                  = 0.973  

With the condition that at least one of the next 3 vehicles passes inspection, the probability that all 3 pass is,

                         = \frac{P(all\ of\ the\ next\ three\ vehicles\ inspected\ pass)}{P(at\ least\ one\ of\ the\ next\ three\ vehicles\ inspected\ passes)}

                         = \frac{0.343}{0.973}

                         = 0.353

You might be interested in
Which product of prime polynomials is equivalent to 8x3 – 2x?
Alexxx [7]
2x2(2x+1)(2x-1) this is the answer I got.
7 0
4 years ago
Read 2 more answers
5. At Costco a case of 12 boxes of macaroni
Marizza181 [45]

$1.50 for each box

Step-by-step explanation:

$18 divided by 12 boxes = $1.50 for each box

7 0
3 years ago
A penny fell off the top of the building and hit the sidewalk below 3.1 seconds later how many meters did the penny fall to the
Sedbober [7]
To solve this we are going to use the free distance fallen formula: d=0.5gt^2
where
d is the distance
g is the gravity of Earth 9.8m/s^2
t is the time in seconds

We know from our problem that the penny fell off the top of the building and hit the sidewalk below 3.1 seconds later, so t=3.1. Lets replace the value in our formula:
d=0.5gt^2
d=0.5(9.8)(3.1)^2
d=47.089 meters

We can conclude that the penny fell a distance of 47.098 meters 
3 0
3 years ago
Find the length of the unknown side. Round your answer to the nearest tenth.<br> 20 m<br> 12 m<br> b
stepladder [879]

The length of the unknown side is 16 meters

<h3>What is a right triangle?</h3>

A right triangle is a triangle that has one of its angles to be 90 degrees

The length of the unknown side is calculated using the following Pythagoras theorem.

20^2 = 12^2  +b^2

Evaluate the exponents

400 = 144  +b^2

Collect like terms

b^2 = 400 -144

Evaluate the like terms

b^2 = 256

Take the square root of both sides

b = 16

Hence, the length of the unknown side is 16 meters

Read more about Pythagoras theorem at:

brainly.com/question/654982

4 0
3 years ago
What is the value of 5 in 673,512
hammer [34]
500 because it is in the hundredths place
6 0
3 years ago
Read 2 more answers
Other questions:
  • My sister went QUaCk and my heart QuaKeD
    7·2 answers
  • 2/5 (10x + 20) &gt; 44
    14·2 answers
  • Explain your answer plez
    12·1 answer
  • Help me on these math questions, please. If someone could answer the top two then that would be great.
    8·1 answer
  • Cross multiply to get answer<br> x + 5/10 = 2x-3/15
    10·1 answer
  • Im confused, please helpp?
    6·2 answers
  • Solve the equation for y. 6x+y=12
    10·1 answer
  • 90 dollars ratio in 1:2:3
    9·1 answer
  • I NEED THIS QUICK!!
    12·1 answer
  • Mark and Don are planning to sell each of their marble collections at a garage sale. If Don has 2 more than 5 times the number o
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!