1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenKa [72]
3 years ago
13

Seventy percent of all vehicles examined at a certain emissions inspection station pass the inspection. Assuming that successive

vehicles pass or fail independently of one another, calculate the following probabilities:
(a) P(all of the next three vehicles inspected pass)
(b) P(at least one of the next three inspected fails)
(c) P(exactly one of the next three inspected passes)
(d) P(at most one of the next three vehicles inspected passes)
(e) Given that at least one of the next three vehicles p
Mathematics
2 answers:
sukhopar [10]3 years ago
6 0

Answer:

a) The probability that all of the next three vehicles inspected pass is 0.343

b) The probability that at least one of the next three inspected fails is 0.657

c) The probability that exactly one of the next three vehicles inspected passes is 0.189

d) The probability of at most one of the next three vehicles inspected passes is 0.216

e) The probability that they all pass given that at least one of the next three vehicle pass is 0.343

Step-by-step explanation:

This is a binomial distribution problem.

Probability of success which is passing (p) = 70% = \frac{7}{10}

Probability of failing (q) = 1 - p = 1 - \frac{7}{10}  = \frac{3}{10}

Based on the options,  number of trial (n) = 3

The formula for binomial distribution problem is given as:

P(X=x) = (nCx) p^{x} q^{n-x}

nCx means n combination x

a) P(all of the next three vehicles inspected pass)

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X=3) = (3C3) 0.7^{3} 0.3^{3-3}\\P(X=3) = (\frac{3!}{3!(3-3)!} ) 0.7^{3} 0.3^{3-3}\\P(X=3) = (\frac{3!}{3!0!} ) 0.7^{3} 0.3^{0}\\P(X=3) = 1 * 0.7^{3}  * 1\\P(X=3) = 1 * 0.7^{3}  * 1\\P(X=3) = 1 * 0.343 * 1\\P(X=3) = 0.343

b) P(at least one of the next three inspected fails)

Probability that at least one of the vehicle means that more that not less than one vehicle fail. So it could be one fail, two fail or three fail which means probability of exactly two pass or less than two pass.

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X\leq 2) = P(X=0) + P(X=1) + P(X=2)\\But P(X=1) = 0.189 \\P(X=0) = 0.027\\P(X=2) = 0.441\\P(X\leq 2) = 0.027 + 0.189 + 0.441\\P(X\leq 2) = 0.657

(c) P(exactly one of the next three inspected passes)

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X=1) = (3C1) 0.7^{1} 0.3^{3-1}\\P(X=1) = (\frac{3!}{1!(3-1)!} ) 0.7^{1} 0.3^{3-1}\\P(X=1) = (\frac{3!}{1!2!} ) 0.7^{1} 0.3^{2}\\P(X=1) = (\frac{6}{1*2} ) 0.7^{1} 0.3^{2}\\P(X=1) = (\frac{6}{2} ) 0.7^{1} 0.3^{2}\\P(X=1) = 3* 0.7^{1} 0.3^{2}\\P(X=1) = 3 * 0.7 * 0.09\\P(X=1) = 0.189

(d) P(at most one of the next three vehicles inspected passes)

At most one means not more than one vehicles pass, that is number of vehicles less than 1

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X\leq 1) = P(X=0) + P(X=1)\\But P(X=1) = 0.189 \\P(X=0) = (3C0) 0.7^{0} 0.3^{3-0}\\P(X=0) = (\frac{3!}{0!(3-0)!} ) 0.7^{0} 0.3^{3-0}\\P(X=0) = (\frac{3!}{0!3!} ) 0.7^{0} 0.3^{3}\\P(X=0) = (\frac{6}{6} ) 0.7^{0} 0.3^{3}\\P(X=0) = 1 * 0.7^{0} 0.3^{3}\\P(X=0) = 1 * 1 * 0.027\\P(X=0) = 0.027\\\\P(X\leq 1) = P(X=0) + P(X=1)\\But P(X=1) = 0.189\\P(X=0) = 0.027\\P(X\leq 1) = 0.027 + 0.189\\P(X\leq 1) = 0.216

(e) Given that at least one of the next three vehicles passes inspection, what is the probability that all three pass (a conditional probability)?

Formula for conditional probability is given as:

P(B|A) = \frac{P(A n B)}{P(A)}

where

B is the probability that they all passes

A is the given probability that at least one of the next three vehicle passes

We need to find the probability for A.

P(X=x) = (nCx) p^{x} q^{n-x}\\P(X\geq 1) = P(X=1) + P(X=2) + P(X =3)\\But\\P(X=1) = 0.441\\P(X=3) = 0.343\\P(X=2) = ?\\P(X=2) = (\frac{3!}{2!(3-2)!} ) 0.7^{2} 0.3^{3-2}\\P(X=2) = (\frac{3!}{2!1!} ) 0.7^{2} 0.3^{1}\\P(X=2) = (\frac{6}{2*1} ) 0.7^{2} 0.3^{1}\\P(X=2) = (\frac{6}{2} ) 0.7^{2} 0.3^{1}\\P(X=2) = 3 * 0.49 * 0.3\\P(X=2) = 0.441\\P(X\geq 1) = P(X=1) + P(X=2) + P(X =3)\\P(X\geq 1) = 0.189 + 0.441 + 0.343\\P(X\geq 1) =0.973

Probability that they all pass = 0.343

Probability that at least one pass = 0.973

P(B|A) = \frac{P(A n B)}{P(A)}\\P(B|A) = \frac{0.343 * 0.973}{0.973} \\P(B|A) = \frac{0.333739}{0.973} \\P(B|A) = 0.343

NeX [460]3 years ago
3 0

Answer:

(a) 0.343

(b) 0.657

(c) 0.189

(d) 0.216

(e) 0.353

Step-by-step explanation:

Let P(a vehicle passing the test) = p

                        p = \frac{70}{100} = 0.7  

Let P(a vehicle not passing the test) = q

                         q = 1 - p

                         q = 1 - 0.7 = 0.3

(a) P(all of the next three vehicles inspected pass) = P(ppp)

                           = 0.7 × 0.7 × 0.7

                           = 0.343

(b) P(at least one of the next three inspected fails) = P(qpp or qqp or pqp or pqq or ppq or qpq or qqq)

      = (0.3 × 0.7 × 0.7) + (0.3 × 0.3 × 0.7) + (0.7 × 0.3 × 0.7) + (0.7 × 0.3 × 0.3) + (0.7 × 0.7 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.3)

      = 0.147 + 0.063 + 0.147 + 0.063 + 0.147 + 0.063 + 0.027

      = 0.657

(c) P(exactly one of the next three inspected passes) = P(pqq or qpq or qqp)

                 =  (0.7 × 0.3 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.7)

                 = 0.063 + 0.063 + 0.063

                 = 0.189

(d) P(at most one of the next three vehicles inspected passes) = P(pqq or qpq or qqp or qqq)

                 =  (0.7 × 0.3 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.7) + (0.3 × 0.3 × 0.3)

                 = 0.063 + 0.063 + 0.063 + 0.027

                 = 0.216

(e) Given that at least one of the next 3 vehicles passes inspection, what is the probability that all 3 pass (a conditional probability)?

P(at least one of the next three vehicles inspected passes) = P(ppp or ppq or pqp or qpp or pqq or qpq or qqp)

=  (0.7 × 0.7 × 0.7) + (0.7 × 0.7 × 0.3) + (0.7 × 0.3 × 0.7) + (0.3 × 0.7 × 0.7) + (0.7 × 0.3 × 0.3) + (0.3 × 0.7 × 0.3) + (0.3 × 0.3 × 0.7)

= 0.343 + 0.147 + 0.147 + 0.147 + 0.063 + 0.063 + 0.063

                  = 0.973  

With the condition that at least one of the next 3 vehicles passes inspection, the probability that all 3 pass is,

                         = \frac{P(all\ of\ the\ next\ three\ vehicles\ inspected\ pass)}{P(at\ least\ one\ of\ the\ next\ three\ vehicles\ inspected\ passes)}

                         = \frac{0.343}{0.973}

                         = 0.353

You might be interested in
If Kansas City is 108 miles away how many gallons of gas I needed to get there and then home
fenix001 [56]

Answer:

Well here's the issue...

Step-by-step explanation:

Since we have no idea what car you'll be using for the experiment, I can't tell you how many times you will have to fill er' up either. let's say you have a fuel efficient car like 27 mpg. that's highway and city combined. (34/25) And the trip is 216 miles round trip. And let's say you used 0 gallons while you were there. You would need to fill up exactly 8 times to get there and back. That's going off of 27 miles per gallon.

Hope this helps!!

6 0
3 years ago
Straight forward questions I just don't know how to do them.
OLga [1]
Answer:

_____________________________

3 0
2 years ago
Which angles are vertical to each other​
topjm [15]

Answer:

You need to attach the picture of the angles

3 0
3 years ago
Read 2 more answers
What is the value of x in the equation 3x-5=-18?<br> -56<br> 52<br> 56
anygoal [31]
I’ll teach you how to solve 3x-5=-18
—————————————-
3x-5=-18
Move constant to the right-hand side and change its sign:
3x=-18+5
Calculate the sum:
3x=-13
Divide both sides of the equation by 3:
X=-13/3
Your Answer Is x=-13/3
Plz mark me as brainliest if this helped :)
8 0
2 years ago
Calculate the cost of manufacturing a standard cereal box if cardboard costs $0.05 per square inch.
leonid [27]
The volume of the box in this problem doesn't really matter, considering that a cereal box is hollow. Assuming the surface area is 174 inches², then you can simply multiply 0.05 x 174, which is 8.7. Then put that number in the form of money to get $8.70. (seems a bit pricey for one cereal box to me ;P)
7 0
3 years ago
Other questions:
  • Please hurry I need help
    9·1 answer
  • What's the probability you roll the same number twice on a regular dice?
    7·1 answer
  • What is the slope of the line between (-3,6) and (-5,9)?
    9·2 answers
  • Can someone help me on this
    6·2 answers
  • Find the number of meters each runner ran in one second<br><br> 200 meters, 19.30 seconds
    10·1 answer
  • Please help mee get the answer today
    14·1 answer
  • Mia purchased a book for $22.30 that were regularly priced at $30.00,not including tax. What percent of the cost did Mia save by
    14·1 answer
  • Is 20% greater than 0.02
    11·1 answer
  • Somebody please prove if a triangle with side length of 6,8,10 is a right triangle using the Pythagorean theorem!! Will mark Bra
    13·1 answer
  • What is the solution of 5sin2θ=3 for 0≤θ≤2π? Please help.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!