<u>Answer:</u> The average atomic mass of copper is 63.55 amu.
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
.....(1)
- <u>For
isotope:</u>
Mass of
isotope = 62.94 amu
Percentage abundance of
= 69.17 %
Fractional abundance of
isotope = 0.6917
- <u>For
isotope:</u>
Mass of
isotope = 64.93 amu
Percentage abundance of
= 30.83 %
Fractional abundance of
isotope = 0.3083
Putting values in equation 1, we get:
![\text{Average atomic mass of Copper}=[(62.94\times 0.6917)+(64.93\times 0.3083)]\\\\\text{Average atomic mass of copper}=63.55amu](https://tex.z-dn.net/?f=%5Ctext%7BAverage%20atomic%20mass%20of%20Copper%7D%3D%5B%2862.94%5Ctimes%200.6917%29%2B%2864.93%5Ctimes%200.3083%29%5D%5C%5C%5C%5C%5Ctext%7BAverage%20atomic%20mass%20of%20copper%7D%3D63.55amu)
Hence, the average atomic mass of copper is 63.55 amu.
Ionic compounds are composed of a non-metal as the anion and a metal as the cation. Covalent compounds on the other hand are composed of both non-metals from both charges. In this case, OF2 is covalent, PBr3 is covalent, SeO2 is ionic, C5H12 is covalent, and CBr4 is covalent.
Ammonia is NH3. The molar mass of NH3 is 17.0307g.
(1.2*10^3)/17.0307=70.46 moles of NH3.
If you are using significant figures, it is 70. moles of NH3.
Answer:
Please see the answer..hope its works
Explanation:
The NMR spectrometer will acquire data for the wrong chemical shift range and you will potentially have skewed data when opening spinworks-NMR spectrometer examines a specific 12 ppm range based on the expected solvent peak, and if a different solvent is used a different range may be examined
To explain further, If the user declares the wrong solvent, one of two things may happen. Firstly, the spectrometer may not be able to establish a deuterium lock and will report an error and not run the sample. Secondly, the spectrometer may be able to establish a lock despite the fact that the deuterium signal is off resonance. If the lock is established, the field strength will be set to a value appropriate to put the declared solvent signal on-resonance. When a proton NMR spectrum is collected, the chemical shift scale will be incorrect by an amount equal to the proton chemical shift difference between the true solvent and the declared solvent.