Answer:
1) prokaryote : no nucleus and is unicellular
2)nucleus : contains genetic information
3) structure: the way it is made
4) eukaryotes : has a nucleus , some are unicellular
5) organelles : perform the different functions the cell need
6) tissue: composed of many cell
7)cell : basic units of Life
8) Mathias schleiden : concluded that all plants are made up of cell
9) Theodore Schwann :concluded all animals are made up of cell
10) Rudolf Virchow : concluded that all cells come from pre-existing cell
Answer:
P₂ ≅ 100 atm (1 sig. fig. based on the given value of P₁ = 90 atm)
Explanation:
Given:
P₁ = 90 atm P₂ = ?
V₁ = 18 Liters(L) L₂ = 12 Liters(L)
=> decrease volume => increase pressure
=> volume ratio that will increase 90 atm is (18L/12L)
T₁ = 272 Kelvin(K) T₂ = 274 Kelvin(K)
=> increase temperature => increase pressure
=> temperature ratio that will increase 90 atm is (274K/272K)
n₁ = moles = constant n₂ = n₁ = constant
P₂ = 90 atm x (18L/12L) x (274K/272K) = 135.9926471 atm (calculator)
By rule of sig. figs., the final answer should be rounded to an accuracy equal to the 'measured' data value having the least number of sig. figs. This means P₂ ≅ 100 atm based on the given value of P₁ = 90 atm.
Answer:
This question is incomplete
Explanation:
The question is incomplete because of the absence of the table but since the question says there are data from an investigation about a plant growth and five other plants (making six) of the same type, the best way to display this type of data for analyst is to use the grouped bar chart. <u>The grouped bar chart will display the data obtained (from an investigation on plant growth) from different students on each of the six plants (of the the same type)</u>.
Colours are usually used to identify the bars (of a group) or could be used to separate the group from other groups but in this case, colours are better used to identify the bars of a group.
Answer:
because too much can neutralise the results
Answer:PLEASE MARK BRAINIEST
The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy. Today, this process uses instruments with a grating that spreads out the light from an object by wavelength. This spread-out light is called a spectrum. Every element — and combination of elements — has a unique fingerprint that astronomers can look for in the spectrum of a given object. Identifying those fingerprints allows researchers to determine what it is made of.
That fingerprint often appears as the absorption of light. Every atom has electrons, and these electrons like to stay in their lowest-energy configuration. But when photons carrying energy hit an electron, they can boost it to higher energy levels. This is absorption, and each element’s electrons absorb light at specific wavelengths (i.e., energies) related to the difference between energy levels in that atom. But the electrons want to return to their original levels, so they don’t hold onto the energy for long. When they emit the energy, they release photons with exactly the same wavelengths of light that were absorbed in the first place. An electron can release this light in any direction, so most of the light is emitted in directions away from our line of sight. Therefore, a dark line appears in the spectrum at that particular wavelength.
Explanation: