Answer:
beacause it's contracts
Explanation:
when using a large bottomed glass the hot water cools that's why is good to use thin bottomed glass
Answer:
Letter b is wavelength. Letter a is amplitude.
Explanation:
Let's imagine a simple experiment. Imagine you have a long thick rope which one end is at your hands, and you start an oscillatory motion in it, moving your hand up and down. Then a friend of you take a picture of the rope in motion, looking at the rope laterally. Now let's find the wavelength and amplitude. Amplitude is "The distance from the center of the oscillation of the rope (when the rope was not in motion) to its high or low point", or the vertical displacement, in our experiment. On the other hand, wavelength is "The distance between one high point /low point and the next high point /low point". Take a look at a photo of a wave in your textbook and you will find the answer as well. ; )
I believe the correct
form of the energy function is:
u (x) = (3.00 N)
x + (1.00 N / m^2) x^3
or in simpler
terms without the units:
u (x) = 3 x +
x^3
Since the
highest degree is power of 3, therefore there are two roots or solutions of the
equation.
Since we are to
find for the positions x in which the force equal to zero, u (x) = 0,
therefore:
3 x + x^3 = u
(x)
3 x + x^3 = 0
Taking out x:
x (3 + x^2) = 0
So one of the
factors is x = 0.
Finding for the
other two factors, we divide the two sides by x and giving us:
x^2 + 3 = 0
x^2 = - 3
x = sqrt (- 3)
x = - 1.732 i, 1.732
i
The other two
roots are imaginary therefore the force is only equal to zero when the position
is also zero.
Answer:
x = 0
The reaper watches. Satan watches. We all watch. As we fade. Into oblivion.