33.6 moles are needed to completely react with 84.0 moles of O2
Answer:
5)HOCH2CH2OH
Explanation:
This is also known as ethylene glycol. An increase in hydrogen bonds of a compound means an increase in the viscosity. Hydrogen bonds occur as a result of bonding with electronegative elements such as Oxygen, Nitrogen etc.
The compounds with the highest amount of Hydrogen bond represents the one with the highest viscosity which is B) HOCH2CH2OH
The correct answer among the choices listed above is option D. The average kinetic energy of water molecules as water freeze <span>decreases as water releases energy to its surroundings. Energy is released as the molecules go into a more condensed phase which is the solid.</span>
Answer: The closeness, arrangement and motion of the particles in a substance change when it changes state. Materials are a store of internal energy , due to the motion of particles and the chemical bonds between them. When a substance is heated, its internal energy increases: the movement of its particles increases.
Explanation:
The volume of SO2 produced at 325k is calculated as below
calculate the moles of SO2 produced which is calculated as follows
write the reacting equation
K2SO3 +2 HCl = 2KCl +H2O+ SO2
find the moles of HCl used
=mass/molar mass = 15g/ 36.5 g/mol =0.411 moles
by use of mole ratio between HCl to SO2 which is 2:1 the moles of SO2 is therefore = 0.411 /2 =0.206 moles of SO2
use the idea gas equation to calculate the volume SO2
that is V=nRT/P
where n=0.206 moles
R(gas constant) = 0.082 L.atm/ mol.k
T=325 K
P=1.35 atm
V=(0.206 moles x 0.082 L.atm/mol.k x325 k)/1.35 atm = 4.07 L of SO2