I believe c is the right answer.
Answer:
The Kinetic Energy is approximately 3 times decreased
Explanation:
A baseball weighs 5.13 oz.
a)What is the kinetic energy, in joules, of this baseball when it is thrown by a major league pitcher at 95.o mi/h?
b) By what factor will the kinetic energy change if the speed of the baseball is decreased to 54.8 mi/h? Express your answer as an integer.
Kinetic Energy (KE)=0.5×mass×velocity ^ 2
Kinetic Energy (KE)=0.5×mass × velocity ^ 2
Joules = kg×m^2/s^2
1 mile = 1609.344 meters
1 hour = 3600 sec
1 Oz = 28.34952 g = 0.02834952 kg
a) KE=0.5×m×v^2
=0.5×(5.13 oz × 0.02834952 kg/1 ounce)×(95 miles/h × 1609.344 m/1 mile × 1 hr/3600 s)^2
=130.761 kg×m^2/s^2 = 130.761 Joules
b) KE=0.5×m×v^2
=0.5×(5.13 oz × 0.02834952 kg/1 ounce)×(54.8 miles/h × 1609.344 m/1 mile × 1 hr/3600 s)^2
=43.51028 kg×m^2/s^2 = 43.51028 Joules
= 130.761 / 43.51028 = 3.00528,
As such the Kinetic Energy is approximately 3 times decreased
<em><u>Answer and Explanation:</u></em>




<em><u>For % of N2 gas:
</u></em>
<em><u /></em>
<em><u /></em>
<em><u /></em>
<em><u /></em>
<em><u /></em>
<em><u /></em>
<em><u /></em>
<em><u /></em>
<em><u /></em>
CnH2n since the equivalent unsaturation is equal with 1
Answer:
Balance molecular equation:
K2CO3(aq) + Sr(NO3)2(aq) → SrCO3(s) + 2KNO3(aq)
Net ionic equation:
CO3∧-2(aq) + Sr∧+2(aq) → SrCO3(s)
Explanation:
Potassium carbonate = K2CO3
Strontium nitrate = Sr(NO3)2
Chemical equation:
K2CO3 + Sr(NO3)2 → SrCO3 + KNO3
Balance chemical equation with physical states:
K2CO3(aq) + Sr(NO3)2(aq) → SrCO3(s) + 2KNO3(aq)
Ionic equation:
2K+(aq) + CO3∧-2(aq) + Sr∧+2(aq) + 2NO∧-3(aq) → SrCO3(s) + 2K+(aq) + 2NO∧-3(aq)
Net ionic equation:
CO3∧-2(aq) + Sr∧+2(aq) → SrCO3(s)
2K+ and 2NO∧-3 ions are spectator ions that's way these are not written in net ionic equation.
Spectator ions:
These are the ions that are present same on both side of chemical reaction and does not effect the equilibrium.