The distance between Los Angeles and San Francisco is approximately 381.9mi.
Divide this distance by the speed.
381.9/72 = 5.3
You are left with the time in hours. To convert to minutes, multiply by 60.
5.3*60 = 318.25
Therefore, it will take 318.25 minutes.
The car should have less kinetic energy.
They are both going the same speed, but the truck is bigger and heavier. The more mass an object has, the more kinetic energy it has. There is more mass being moved, so it makes more kinetic energy. The car does not have as much mass, so it makes less kinetic energy compared to the truck.
Good luck with the rest of your test or quiz :)
Answer:
L = 1.545 m
Explanation:
Let the total length of the rod is L
now the torque must applied on the other end of the rod so that it will balance the torque due to weight of rock on other side of fulcrum
so we will have

so we have

F = 663 N


When a source of light moves away from you, you see the characteristic lines in its spectrum move toward slightly longer wavelengths. Lines in the visible part of the spectrum move toward the red end.
When a source of light moves toward you, you see the characteristic lines in its spectrum move to slightly shorter wavelengths. Lines in the visible part of the spectrum move toward the violet end.
We see these 'shifts' when we look at the spectra of stars. "Red shift" is the change in the spectrum of a star when it's moving away from us, and "Blue shift" is the change when it's moving toward us. These measurements are the only way we have of measuring the radial motion of stars, and their speeds toward or away from us.
The whole subject of why a spectrum shifts toward longer or shorter wavelengths was explained by the Austrian physicist Christian Doppler in 1842, and it's known as the "Doppler Shift" in honor of him and his work.
Answer:
D. TA < TB
Explanation:
From general gas equation, we know that:
PV = nRT
PV/R = nT
where,
P = pressure of gas
V = volume of gas
R = General gas constant
T = temperature of gas
n = no. of moles of gas
<u>FOR CYLINDER A</u>:
PV/R = (nA)(TA) _____ eqn (1)
<u>FOR CYLINDER B</u>:
PV/R = (nB)(TB) _____ eqn (2)
Because, Pressure, Volume are constant for both cylinders.
Comparing eqn (1) and (2)
(nA)(TA) = (nB)(TB)
It is given that the amount of gas in cylinder A is twice as much as the gas in cylinder B. This means the number moles in cylinder A are twice as much as no. of moles in cylinder B.
nA = 2(nB)
using this in eqn:
2(nB)(TA) = (nB)(TB)
TA = (1/2)(TB)
<u>TA = 0.5 TB</u>
Therefore it is clear that the correct option is:
<u>D. TA<TB</u>