The total resistance of a series circuit is equal to the sum of individual resistances. Voltage applied to a series circuit is equal to the sum of the individual voltage drops. The voltage drop across a resistor in a series circuit is directly proportional to the size of the resistor.
If you know the total current and the voltage across the whole circuit, you can find the total resistance using Ohm's Law: R = V / I. For example, a parallel circuit has a voltage of 9 volts and total current of 3 amps. The total resistance RT = 9 volts / 3 amps = 3 Ω
Current: The total circuit current is equal to the sum of the individual branch currents. Resistance: Individual resistances diminish to equal a smaller total resistance rather than add to make the total.
 
        
                    
             
        
        
        
Answer:
In a way it does, but overall, there are many factors that affect your rank. In general, and talking about the average Platinum II, they are pretty decent according to casual player standards.
Explanation:
 
        
             
        
        
        
Answer:
A. 1.172 metres
B. 6.82 Ns
C. 4.796 m/s
Explanation:
The total initial momentum is gotten by multiplying the mass and initial velocity of the both bodies.
The 1.40 kg block is at rest so velocity is zero and has no momentum.
The bullet of mass 22 g = 0.022 kg with velocity of 310 m/s
Momentum = 310*0.022
Momentum = 6.82 Ns.
If the bullet gets embedded they will both have common velocity v
6.82 = (0.022+1.40)v
6.82 = 1.422v
V = 6.82/1.422
V = 4.796 m/s
How high the block will rise after the bullet is embedded is given by
H = (U²Sin²tita)/2g
Where tita is 90°
H = (4.796² * sin²(90))/(2*9.81)
H =( 23.001616*1)/19.62
H = 1.172 metres
 
        
             
        
        
        
Is this a question or a statement. This statement would be incorrect. <span />
        
             
        
        
        
Answer:
15.6m/s
Explanation:
V1= because the derivate of the position is the velocity
 because the derivate of the position is the velocity
V1=12t+3
V2=20+ -8t because the integral of the acceleration is the velocity
-8t because the integral of the acceleration is the velocity
V2=
V1=V2 to see when the velocities of particles match
12t+3=20-4t^2
4t^2+12t-17=0 we resolve this with 
and we take the positif root 
t=1.05 sec
if we evaluate the velocity (V1 or V2) the result is 15.6m/s