Given Data: Diameter 'd' = 30 cm = 0.3 m Lifting Weight 'W' = mg = 2000*9.81 N = 19,620 N Calculations: Area of the lift 'A' = <span>pi\over4*d^2=pi\over4*0.3^2=0.07 m^2
Thank you for posting your question here at brainly. I hope the answer helps. </span>
Answer:
1) Transition states are short-lived
Explanation:
Transition state theory explains the rates of elementary chemical reactions. It assumes a quasi-equilibrium between reactants and activated transition state complexes.
The following are the characteristics of transition states
- Instability
- Ill-defined
- High energy
- short-lived
The species that must collide for the reaction to occur are shown by the mechanism of reaction and not the balanced reaction itself
Intermediates are consumed in each step of the overall reaction, they are not short lived
If you’re talking about atoms, I hope this helps
Atoms consist of three basic particles: protons, electrons, and neutrons. The nucleus (center) of the atom contains the protons (positively charged) and the neutrons (no charge). The outermost regions of the atom are called electron shells and contain the electrons (negatively charged)
Answer:
a) t = 20 [s]
b) Can't land
Explanation:
To solve this problem we must use kinematics equations, it is of great importance to note that when the plane lands it slows down until it reaches rest, ie the final speed will be zero.
a)

where:
Vf = final velocity = 0
Vi = initial velocity = 100 [m/s]
a = desacceleration = 5 [m/s^2]
t = time [s]
Note: the negative sign of the equation means that the aircraft slows down as it stops.
0 = 100 - 5*t
5*t = 100
t = 20 [s]
b)
Now we can find the distance using the following kinematics equation.

x - xo = distance [m]
x -xo = (0*20) + (0.5*5*20^2)
x - xo = 1000 [m]
1000 [m] = 1 [km]
And the runaway is 0.8 [km], therefore the jetplane needs 1 [km] to land. So the jetpalne can't land