The volume in liters occupied by 22.6 g of I₂ gas at STP is 1.99 L (answer A)
<u><em>calculation</em></u>
Step: find the moles of I₂
moles= mass÷ molar mass
from periodic table the molar mass of I₂ is 253.8 g/mol
moles = 22.6 g÷253.8 g/mol =0.089 moles
Step 2:find the volume of I₂ at STP
At STP 1 moles =22.4 L
0.089 moles= ? L
<em>by cross multiplication</em>
={ (0.089 moles x 22.4 L) /1 mole} = 1.99 L
Answer:
It would increase the final quantity of products
Explanation:
According to the Le- Chatelier principle,
At equilibrium state when stress is applied to the system, the system will behave in such a way to nullify the stress.
The equilibrium can be disturb,
By changing the concentration
By changing the volume
By changing the pressure
By changing the temperature
Consider the following chemical reaction.
Chemical reaction:
2NO₂ ⇄ N₂O₄
In this reaction the equilibrium is disturb by increasing the concentration of reactant.
When the concentration of reactant is increased the system will proceed in forward direction in order to regain the equilibrium. Because when reactant concentration is high it means reaction is not on equilibrium state. As the concentration of NO₂ increased the reaction proceed in forward direction to regain the equilibrium state and more product is formed.
Answer:
Cu(NO3)2 --> MM187.5558
NiNO3 *COEF2* --> 120.6983
Explanation:
Sodium has atomic number of 11 and its electronic configuration is given by:
![[Na]=1s^22s^22p^63s^1](https://tex.z-dn.net/?f=%5BNa%5D%3D1s%5E22s%5E22p%5E63s%5E1)
The nearest stable electronic configuration to sodium is of the neon. So, in order to attain stability of noble gas it will loose its single electron.

![[Na^+]=1s^22s^22p^63s^0](https://tex.z-dn.net/?f=%5BNa%5E%2B%5D%3D1s%5E22s%5E22p%5E63s%5E0)
Sodium has single valency that is 1.
Let nbe the valency of the ion 'X'
By criss-cross method, the oxidation state of the ions gets exchanged and they form the subscripts of the other ions. This results in the formation of a neutral compound.

So, the formulas for all the possible compounds that sodium can form with the other ions will be:
