Answer:
a) 16 N
b) 2.13 m/s²
Explanation:
Draw a free body diagram of the tv stand. There are four forces:
Weight force mg pulling down,
Normal force N pushing up,
Friction force Nμ pushing left,
and applied force P pulling right.
Sum of forces in the y direction:
∑F = ma
N − mg = 0
N = mg
The net force in the x direction is:
∑F = P − Nμ
∑F = P − mgμ
∑F = 25 N − (7.5 kg) (10 m/s²) (0.12)
∑F = 16 N
Net force equals mass times acceleration:
∑F = ma
16 N = (7.5 kg) a
a = 2.13 m/s²
Answer:
Δx = 4.68 x 10⁻³ m = 4.68 mm
Explanation:
The distance between the consecutive maxima, in Young's Double Slit Experiment is given bu the following formula:
Δx = λD/d
So, the distance between the eighth order maximum and the fourth order maximum on the screen will be given as:
Δx = 4λD/d
where,
Δx = distance between eighth order maximum and fourth order maximum=?
λ = wavelength = 487 nm = 4.87 x 10⁻⁷ m
d = slit separation = 0.2 mm = 2 x 10⁻⁴ m
D = Distance between slits and screen = 48 cm = 0.48 m
Therefore,
Δx = (4)(4.87 x 10⁻⁷ m)(0.48 m)/(2 x 10⁻⁴ m)
<u>Δx = 4.68 x 10⁻³ m = 4.68 mm</u>
work is force x distance = 25 x 0.4
= 2.5x4 = 10joules
pwer would be 10j/2s watts .... 5 watts
Answer:0.253Joules
Explanation:
First, we will calculate the force required to stretch the string. According to Hooke's law, the force applied to an elastic material or string is directly proportional to its extension.
F = ke where;
F is the force
k is spring constant = 34N/m
e is the extension = 0.12m
F = 34× 0.12 = 4.08N
To get work done,
Work is said to be done if the force applied to an object cause the body to move a distance from its initial position.
Work done = Force × Distance
Since F = 4.08m, distance = 0.062m
Work done = 4.08 × 0.062
Work done = 0.253Joules
Therefore, work done to stretch the string to an additional 0.062 m distance is 0.253Joules