<span> The boiling point of water at sea level is 100 °C. At higher altitudes, the boiling point of water will be.....
a) higher, because the altitude is greater.
b) lower, because temperatures are lower.
c) the same, because water always boils at 100 °C.
d) higher, because there are fewer water molecules in the air.
==> e) lower, because the atmospheric pressure is lower.
--------------------------
Water boils at a lower temperature on top of a mountain because there is less air pressure on the molecules.
-------------------
I hope this is helpful. </span>
To solve this problem it is necessary to apply the concepts related to the conservation of the Gravitational Force and the centripetal force by equilibrium,


Where,
m = Mass of spacecraft
M = Mass of Earth
r = Radius (Orbit)
G = Gravitational Universal Music
v = Velocity
Re-arrange to find the velocity



PART A ) The radius of the spacecraft's orbit is 2 times the radius of the earth, that is, considering the center of the earth, the spacecraft is 3 times at that distance. Replacing then,


From the speed it is possible to use find the formula, so



Therefore the orbital period of the spacecraft is 2 hours and 24 minutes.
PART B) To find the kinetic energy we simply apply the definition of kinetic energy on the ship, which is



Therefore the kinetic energy of the Spacecraft is 1.04 Gigajules.
They move in a waves motion
A convex mirror makes a reflected light rays spread out.
Answer:
Hello your question is incomplete hence I will give you a general answer on how A van de Graaff generator works
answer :
If the electrons falls through a PD of 150mV the electron will gain energy of 150MeV
Explanation:
when a Van de Graff generator is used to accelerate an electron through a PD ( potential difference ) of any value the particle ( electron ) the electron will gain energy ( eV ) which is is equivalent in value of the PD it accelerated through
hence if the electrons falls through a PD of 150mV the electron will gain energy of 150MeV