Answer:
The molecular formula = 
Explanation:
Given that:
Mass of compound, m = 0.145 g
Temperature = 200 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (200 + 273.15) K = 473.15 K
V = 97.2 mL = 0.0972 L
Pressure = 0.74 atm
Considering,
Using ideal gas equation as:
where,
P is the pressure
V is the volume
m is the mass of the gas
M is the molar mass of the gas
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the values in the above equation as:-
The empirical formula is =
Molecular formulas is the actual number of atoms of each element in the compound while empirical formulas is the simplest or reduced ratio of the elements in the compound.
Thus,
Molecular mass = n × Empirical mass
Where, n is any positive number from 1, 2, 3...
Mass from the Empirical formula = 12 + 1 = 13 g/mol
Molar mass = 78.31 g/mol
So,
Molecular mass = n × Empirical mass
78.31 = n × 13
⇒ n ≅ 6
The molecular formula = 
True.
For example: Sodium oxide and Nitric acid; both compounds contain oxygen.
The smallest halogen atom is fluorine
Answer:
Weak acid and base solutions contain multiple charged and uncharged species in dynamic equilibrium. Strong acids and strong bases refer to species that completely dissociate to form ions in solution.
Explanation:
Answer:
B. The carbons on either side of the double bond are Pointed in opposite directions