Answer : The correct option is, (B) 
Solution :
According to the Graham's law, the rate of effusion of gas is inversely proportional to the square root of the molar mass of gas.

or,
..........(1)
where,
= rate of effusion of unknown gas = 
= rate of effusion of oxygen gas = 
= molar mass of unknown gas = ?
= molar mass of oxygen gas = 32 g/mole
Now put all the given values in the above formula 1, we get:


The unknown gas could be carbon dioxide
that has approximately 44 g/mole of molar mass.
Thus, the unknown gas could be carbon dioxide 
Answer:The maximum kinetic energy KEe of ejected electrons (photoelectrons) is given by KEe=hf−BE KE e = h f − BE , where hf is the photon energy and BE is the binding energy (or work function) of the electron to the particular material.
Explanation:
Answer:

Explanation:
(a) Balanced equation
2Zn + O₂ ⟶ 2ZnO
(b). Calculation
You want to convert moles of ZnO to moles of Zn
The molar ratio is 2 mol Zn:2 mol ZnO

<span>The two categories for classifying particulate matter are through analysis of the intensive and extensive properties. Intensive properties are independent properties that can be measured independent of the amount of matter while extensive properties are measured dependent on the amount.</span>
Answer:
277.7 g of CO2
Explanation:
Equation of reaction
C13H18O2 + 11O2 ---> 13CO2 + 9H2O
From the equation of reaction
1 mole of ibuprofen produces 13 moles of CO2
Molar mass of ibuprofen is 206g
Molar mass of CO2 is 44g
13 moles of CO2 weighs 572g
Therefore, 100g of ibuprofen will produce (100×572)/206 of CO2
= 277.7g