Answer:
April to June
Explanation:
Not really an explanation, I just know it.
Answer:
6957.04N
Explanation:
Using
vf2=vi2+2ad
But vf = 0 .
So convert 50km/hr to m/s, and you need to convert 61 cmto m
(50km/hr)*(1hr/3600s)*(1000m/km) = 13.9m/s
61cm * (1m/100cm) = .61m
So n
0 = (13.9m/s)^2 + 2a(.61m)
a = 158.11m/s^2
So
using F = ma
F = 44kg(158.11m/s^2) = 6957.04N
It occurs when energy is supplied or withdrawn :)
Answer:
The corridor's distance is "90 m".
Explanation:
- She heads in the east directions but creates the first pause, meaning she crosses the distance 'x' in step 1.
- Now, provided that perhaps the distance by her to another fountain or waterfall just after the first stop is twice as far away she traveled.
- Because she moved the distance of 'x,' then, therefore, her distance towards the fountain of '2x.' She casually strolls and once again pauses 60 m beyond her stop.
- The gap about her to the waterfall during that time approximately twice the distance and her to the eastern end of the hallway.
- Assume her gap from either the east end of the platform seems to be 'y' at either the second stop, after which '2y' may become the distance between the 2nd pause and the waterfall.
Now,
⇒ 
⇒ 
The total distance of the corridor will be:
= 
= 
= 
= 
Answer: A)
Explanation: when an electron is placed in a magnetic field, it experiences a force.
This force is given below as
F=qvB*sinθ
F = force experienced by charge.
q = magnitude of electronic charge
v = speed of electron
B= strength of magnetic field
θ = angle between magnetic field and velocity.
What defines the force exerted on the charge is the angle between the field and it velocity.
If magnetic field is parallel to velocity, then it means that θ=0° which means sin 0 = 0, which means
F = qvB * 0 = 0.
The charge being at rest has nothing to do with the angle between magnetic field strength and velocity.