It is conduction. Rhejrjrjejehrhrhvrbrgr
Answer:
1. Decreases,
2. Increases,
3. Increases
Explanation:
The heat which is a product of sun's energy, is transferred from the sun to the earth through radiation, conduction or convention. This heat passes through the earth atmosphere, then warms it , before becoming heat energy.
Therefore, Heat is transferred from the sun to the earth via electromagnetic waves . Because of this transfer, the entropy of the sun DECREASES, the entropy of the earth INCREASES and the entropy of the sun-earth system INCREASES.
<span>The Appalachian Mountains were formed when colliding tectonic plates folded and upthrust, mainly during the Permian Period and again in the Cretaceous Period. The folds and thrusts were then eroded and carved by wind, streams and glaciers. These erosive processes are ongoing, and the topography of the Appalachian Mountains continue to change. They have changed with the miles of land that are cleared of all vegetation and topsoil. In the 1970's coal miners literally blow away the top of a mountain to get to the coal underneath.</span>
Answer:
Electric potential = 0.00054 V
Explanation:
We are given;
Charge; q = 3 pC = 3 × 10^(-12) C
Radius; r = 2 cm = 0.02 m
Formula for the electric potential of this surface will be;
V = kqr
Where;
K is a constant = 9 × 10^(9) N⋅m²/C².
Thus;
V = 9 × 10^(9) × 3 × 10^(-12) × 0.02
V = 0.00054 V
Answer:
2.23 × 10^6 g of F- must be added to the cylindrical reservoir in order to obtain a drinking water with a concentration of 0.8ppm of F-
Explanation:
Here are the steps of how to arrive at the answer:
The volume of a cylinder = ((pi)D²/4) × H
Where D = diameter of the cylindrical reservoir = 2.02 × 10^2m
H = Height of the reservoir = 87.32m
Therefore volume of cylindrical reservoir = (3.142×202²/4)m² × 87.32m = 2798740.647m³
1ppm = 1g/m³
0.8ppm = 0.8 × 1g/m³
= 0.8g/m³
Therefore to obtain drinking water of concentration 0.8g/m³ in a reservoir of volume 2798740.647m³, F- of mass = 0.8g/m³ × 2798740.647m³ = 2.23 × 10^6 g must be added to the tank.
Thank you for reading.