An object or any location can be represented on a two-dimensional surface like a paper or computer screen. This representation is known as map. Most maps do not take into account the elevation of the object or the location they representing. On the other hand, Topographic maps use contour lines to represent the third dimension and to show elevation change on or below the surface of the earth.
By definition we have that the energy at the top of the ramp is equal to the energy at the bottom of the ramp. This is due to the principle of energy conservation.
We have then:

The energy at the top is only potential energy:

Where,
- <em>m: mass
</em>
- <em>g: acceleration of gravity
</em>
- <em>h: vertical height of the ramp
</em>
The energy when it falls is transformed into kinetic energy and therefore:

Where,
- <em>v: object speed.
</em>
Therefore we have:

Answer:
The potential energy is transformed into kinetic energy.

Answer:

Explanation:
Acceleration on a VT graph is the slope of the line at the given point. We can find the slope at 3 with Δy/Δx. This gives us (4-2)/(3-(-3)) which works out to be -3m/s^2
Answer:

Explanation:
Let's use Ohm's law:
or
(1)
Where:

We know the value of the voltage V, so we need to find the value of R in order to find I. Fortunately there is a relation between the resistivity of a conductor and its electrical resistance given by:
(2)
Where:

Keep in mind that the electrical resistivity of the gold is a known constant which is
and the cross sectional area of the conductor is calculated as:

Because we have a wire in this case, so we assume a cylindrical geometry.
Now replacing our data in (2)

Finally, we know R and V, so replacing these values in (1) we will be able to find the current:

C is the answer! hope it helps