Map one onto the other rigid transformations preserve segments
Step-by-step explanation:
![\frac{x}{8} + \frac{5}{2} = \frac{3}{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bx%7D%7B8%7D%20%20%2B%20%20%5Cfrac%7B5%7D%7B2%7D%20%20%3D%20%20%5Cfrac%7B3%7D%7B2%7D%20)
by taking L.C.M
![\frac{2x + 40}{8} = \frac{3}{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B2x%20%2B%2040%7D%7B8%7D%20%20%3D%20%20%5Cfrac%7B3%7D%7B2%7D%20)
![cross \: the \: values](https://tex.z-dn.net/?f=cross%20%5C%3A%20the%20%5C%3A%20values)
![2(2x + 40) = 8 \times 3](https://tex.z-dn.net/?f=2%282x%20%2B%2040%29%20%3D%20%208%20%5Ctimes%203)
![4x + 80 = 24](https://tex.z-dn.net/?f=4x%20%2B%2080%20%3D%2024)
![4x = 24 - 80](https://tex.z-dn.net/?f=4x%20%3D%2024%20-%2080)
![4x = - 56](https://tex.z-dn.net/?f=4x%20%3D%20%20-%2056)
![x = \frac{ - 56}{4}](https://tex.z-dn.net/?f=x%20%3D%20%20%5Cfrac%7B%20-%2056%7D%7B4%7D%20)
![x = - 14](https://tex.z-dn.net/?f=x%20%3D%20-%2014)
6/5=1,
11/7=2,
21/4=5,
32/7=5,
24/9=3
25/6=4
Hope this helps xoxo
<span>the relationship is that they both have an x that substitutes for them</span>
It's important that you use the correct symbol to indicate exponentiation.
<span>f(x) = 0.4(3)x f(x) = 3(0.5)x f(x) = 0.8(0.9)x f(x) = 0.9(5)−x should be written as:
</span><span>f(x) = 0.4(3)^x f(x) = 3(0.5)^x f(x) = 0.8(0.9)^x f(x) = 0.9(5)−x.
Please double-check that last problem, as I am unsure of whether you meant 0.9^5 or (0.9)(5).
f(x) = 0.4(3)^x is definitely an exponential function.
Please try again. Do those problems that you can do an ask questions about the others.
</span>