From the calculations, the pH of the final solution is 9.04.
<h3>What is the pH of the buffer?</h3>
We can use the Henderson Hasselbach equation to obtain the final pH of the solution in terms of the pKb and the base concentration.
Number of moles of salt = 250/1000 L * 0.5 M = 0.125 moles
Number of moles of base = 150/1000 L * 0.5 M = 0.075 moles
Total volume of solution = 250ml + 150ml = 400ml or 0.4 L
Molarity of base = 0.075 moles/ 0.4 L = 0.1875 M
Molarity of salt = 0.125 moles/ 0.4 L = 0.3125 M
pOH = pKb + log[salt/base]
pKb = -log(1.8 x 10^-5) = 4.74
pOH = 4.74 + log[0.3125/0.1875 ]
pOH = 4.96
pH = 14- 4.96
pH = 9.04
Learn more about pH:brainly.com/question/15289741
#SPJ1
45 m. If each student needs 750 mm of tubing, the teacher should order 45 m of tubing.
a) Find the <em>length in millimetres</em>
Length = 60 students x (750 mm tubing/1 student) = 45 000 mm tubing
b) Convert <em>millimetres to metres
</em>
Length = 45 000 mm tubing x (1 m tubing/1000 mm tubing) = 45 m tubing
Answer:
(a) SeF₄
(b) OF₂
(c) N₂O
(d) PCl₃
Explanation:
Write the formula for each compound.
(a) selenium tetrafluoride. According to the name, this compound has 1 atom of Se and 4 atoms of F. The resulting formula is SeF₄, in which Se has the oxidation number 4+ and F has the oxidation number 1-.
(b) oxygen difluoride. According to the name, this compound has 1 atom of O and 2 atoms of F. The resulting formula is OF₂, in which the oxidation number of O is 2+ and the oxidation number of F is 1-.
(c) dinitrogen monoxide. According to the name, this compound has 2 atoms of N and 1 atom of O. The resulting formula is N₂O, in which the oxidation number of N is 1+ and the oxidation number of O is 2-.
(d) phosphorus trichloride. According to the name, this compound has 1 atom of P and 3 atoms of Cl. The resulting formula is PCl₃, in which the oxidation number of P is 3+ and the oxidation number of Cl is 1-.
Answer: 0.22 M
Explanation:

Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.

moles of 

Thus moles of
= 0.011
According to stoichiometry:
2 moles of
require 1 mole of 
Thus 0.011 moles of
require=
moles of 
Thus Molarity of 
Therefore, the molarity of
in the solution is 0.22 M