Answer:
8.33 atm
Explanation:
Xe is 5 out of (4+5) or 5 / 9 ths of the gas present
5/9 * 15 atm = 8.33 atm
<u>Answer:</u> The
for the reaction is 54.6 kJ/mol
<u>Explanation:</u>
For the given balanced chemical equation:

We are given:

- To calculate
for the reaction, we use the equation:
![\Delta G^o_{rxn}=\sum [n\times \Delta G_f(product)]-\sum [n\times \Delta G_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G_f%28reactant%29%5D)
For the given equation:
![\Delta G^o_{rxn}=[(2\times \Delta G^o_f_{(COCl_2)})]-[(1\times \Delta G^o_f_{(CO_2)})+(1\times \Delta G^o_f_{(CCl_4)})]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28COCl_2%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28CO_2%29%7D%29%2B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28CCl_4%29%7D%29%5D)
Putting values in above equation, we get:
![\Delta G^o_{rxn}=[(2\times (-204.9))-((1\times (-394.4))+(1\times (-62.3)))]\\\Delta G^o_{rxn}=46.9kJ=46900J](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%28-204.9%29%29-%28%281%5Ctimes%20%28-394.4%29%29%2B%281%5Ctimes%20%28-62.3%29%29%29%5D%5C%5C%5CDelta%20G%5Eo_%7Brxn%7D%3D46.9kJ%3D46900J)
Conversion factor used = 1 kJ = 1000 J
- The expression of
for the given reaction:

We are given:

Putting values in above equation, we get:

- To calculate the Gibbs free energy of the reaction, we use the equation:

where,
= Gibbs' free energy of the reaction = ?
= Standard gibbs' free energy change of the reaction = 46900 J
R = Gas constant = 
T = Temperature = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
= equilibrium constant in terms of partial pressure = 22.92
Putting values in above equation, we get:

Hence, the
for the reaction is 54.6 kJ/mol
Calcium carbonate also is used as an antacid to relieve heartburn, acid indigestion, and upset stomach. It is available with or without a prescription. This medication is sometimes prescribed for other uses. Hope this is the right answer your looking for
Answer: The volume of a 0.10 mol/l HCl solution needed to neutralize 10 ml of a 0.15 mol/l LiOH solution is 15 ml
Explanation:
To calculate the volume of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is LiOH.
We are given:

Putting values in above equation, we get:

Thus the volume of a 0.10 mol/l HCl solution needed to neutralize 10 ml of a 0.15 mol/l LiOH solution is 15 ml
Answer:
See explanation
Explanation:
Now we have, the graph attached.the stable disintegration product of C-14 is N-14.
Then;
Since the mass of C-14 originally present is 64g, at a time t= 17100 years, we will have;
N/No = (1/2)^t/t1/2
N = mass of C-14 at time t
No= mass C-14 originally present
t = time taken for N amount of C-14 to remain
No = mass of C-14 originally present
t1/2 = half life of C-14
N/64 = (1/2)^17,100/5730
N/64 = (1/2)^3
N/64 = 1/8
8N = 64
N = 8 g