Answer: Transverse waves have motion perpendicular to velocity, while longitudinal waves have motion parallel to velocity.
Explanation:
Transverse waves are characterized by the fact that the particles of the medium in which they propagate move transversely to the direction of propagation of the wave.
In other words,<u> its displacement is perpendicular to the direction of propagation of the wave</u>, being a good example the circular waves in the water.
On the other hand, Longitudinal waves are characterized by the fact that <u>the oscillation of the particles in the medium is parallel to the direction of propagation of the wave.</u> A good example of this is the sound wave.
Power can be defined as the rate at which work is accomplished.
Option D is the correct answer.
<h3>
</h3><h3>
Power </h3>
The work done by an object in a given time interval is called the power of that object.
Suppose an external force F is applied to any object for the time interval T seconds. Due to this external force, the object will perform some amount of work for the time T seconds. This work W done by the object for the time interval T seconds is called the power of that object.
Power can be defined in mathematical term which is given below.

Thus the power can also be defined as the work done by the object per unit time interval.
Hence we can conclude that option D is the correct answer.
To know more about power, follow the link given below.
brainly.com/question/1618040.
Answer:
The anomalous expansion of water is an abnormal property of water whereby it expands instead of contracting when the temperature goes from 4o C to 0o C, and it becomes less dense. The density is maximum at 4 degree centigrade and decreases below that temperature as shown in graph.
Explanation:do you want me to explain it more??
Static friction is the friction that exists between two or more solids that are not moving with a relative speed. To calculate the static friction coefficient we use the formula Fs=us × n where Fs is the static friction , us is the coefficient of static friction and the n is the normal force.
thus the coefficient of static friction will be 5 N÷ 25 N = 0.2
Hence 0.2 is the coefficient of static friction
Answer:
There is absolutely No relationship between the weight of an object (which is constant) and the frictional force. If a block is sliding on a surface, that surface will be exerting a force on the block. That force can be resolved into a component parallel to the surface (which we call the frictional component), and a component perpendicular to the surface (called the normal component). For many situations, we find experimentally that the frictional component is approximately proportional to the normal component. The frictional component divided by the normal component is defined to be a quantity called the coefficient of kinetic or sliding friction. The coefficient of kinetic friction obviously depends on the nature of the surfaces involved. The normal component on an object can be decreased if you pull in the direction of the normal component (the weight does not change). However pulling this way on the object not only decreases the normal component, but it also decreases the frictional component since they are proportional. This is why it is easier to slide something if you pull up on it while you push it. If you push down, the normal and frictional components increase so it is harder to slide the object. The weight of an object is the downward force exerted by Earth’s gravity on that object, and it does not change no matter how you push or pull on the object.