1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kipish [7]
2 years ago
13

In a game of pool, the cue ball moves at a speed of 2 m/s toward the eight ball. When the cue ball hits the eight ball, the cue

ball bounces off with a speed of 0.8 m/s at an angle of 20°, as shown in the diagram below. Both balls have a mass of 0.6 kg. a. What is the momentum of the system before the collision? (Write it in component form.) (1 point)
b. What is the momentum of the system after the collision? (1 point)



c. Write the velocity of the cue ball after the collision in component form. (1 point)




















d. What is the x-component of the velocity of the eight ball after the collision? (2 points)















e. What is the y-component of the velocity of the eight ball after the collision? (2 points)















f. At what angle does the eight ball travel after the collision? (2 points)















g. What is the magnitude of the eight ball's velocity after the collision? (1 point)
Physics
1 answer:
agasfer [191]2 years ago
7 0

Answer:

a)  p₀ = 1.2 kg m / s,  b) p_f = 1.2 kg m / s,  c)   θ = 12.36, d)  v_{2f} = 1.278 m/s

Explanation:

a system formed by the two balls, which are isolated and the forces during the collision are internal, therefore the moment is conserved

a) the initial impulse is

        p₀ = m v₁₀ + 0

        p₀ = 0.6 2

        p₀ = 1.2 kg m / s

b) as the system is isolated, the moment is conserved so

       p_f = 1.2 kg m / s

we define a reference system where the x-axis coincides with the initial movement of the cue ball

we write the final moment for each axis

X axis

        p₀ₓ = 1.2 kg m / s

        p_{fx} = m v1f cos 20 + m v2f cos θ

        p₀ = p_f

       1.2 = 0.6 (-0.8) cos 20+ 0.6 v_{2f} cos θ

        1.2482 = v_{2f} cos θ

Y axis  

       p_{oy} = 0

       p_{fy} = m v_{1f} sin 20 + m v_{2f} cos θ

       0 = 0.6 (-0.8) sin 20 + 0.6 v_{2f} sin θ

       0.2736 = v_{2f} sin θ

we write our system of equations

        0.2736 = v_{2f} sin θ

        1.2482 = v_{2f} cos θ

divide to solve

        0.219 = tan θ

         θ = tan⁻¹ 0.21919

         θ = 12.36

let's look for speed

           0.2736 = v_{2f} sin θ

            v_{2f} = 0.2736 / sin 12.36

           v_{2f} = 1.278 m / s

You might be interested in
What is formula for finding period of a planet if its mass is found by sending a spacecraft
Yanka [14]
T = D/V, where D = distance, V = tangential velocity.
7 0
2 years ago
Which two quantities are measured in the same units? (5 points)
Alex787 [66]
C. Impulse and Momentum
7 0
3 years ago
Read 2 more answers
What does a kidney do
ycow [4]
They clean your blood, balance bodily fluids, form urine, and aid in other functions of the body.
8 0
2 years ago
Read 2 more answers
The concrete slab of a basement is 11 m long, 8 m wide, and 0.20 m thick. During the winter, temperatures are nominally 17°C and
mina [271]

Answer:

\frac{dQ}{dt}= 4312 W

Explanation:

As we know that base of the slab is given as

A = 11 \times 8

A = 88 m^2

now we know that rate of heat transfer is given as

\frac{dQ}{dt} = \frac{kA}{x} (T_2 - T_1)

here we know that

k = 1.4 W/m k

Also we have

x =0.20

\frac{dQ}{dt} = \frac{1.4(88)}{0.20}(17 - 10)

\frac{dQ}{dt}= 4312 W

7 0
2 years ago
What is the magnitude of fs on an object lying on a flat surface without moving, on
Degger [83]

The magnitude of the force acting on the object lying on a flat surface without moving is 10 N.

The given parameters;

  • magnitude of force on the object, F = 10 N
  • angle between the object and the horizontal flat surface = 0⁰

Apply Newton's second law of motion to determine the magnitude of the force on the object.

Due to the position of the object, the magnitude of the force acting on it is calculated as;

\Sigma F_{net} = F\sin(\theta ) + F cos(\theta)\\\\\Sigma F_{net} = 10 sin(0) + 10cos(0)\\\\\Sigma F_{net} = 10 \ N

Therefore, the magnitude of the force acting on the object is 10 N.

Learn more here: brainly.com/question/19887955

7 0
2 years ago
Other questions:
  • If a 2.00kg ball is thrown straight upward and its maximum height is 25.51. what is the value of KE?
    13·1 answer
  • Wind direction is noted based on what direction the wind is coming FROM?
    10·1 answer
  • What type of mechanical wave needs a medium?
    9·1 answer
  • In class we described the tidal forces that are responsible for raising and lowering thewater level near the shore of the ocean.
    9·1 answer
  • A sailboat starts from rest and accelerates at a rate of 0.21 m/s^2 over a distance of 280 m. find the magnitude of the boat's f
    6·1 answer
  • A gas laser has a cavity length of 1/3 m and a single oscillation frequency of 9.0 x 1014 Hz. What is the cavity mode number?
    13·1 answer
  • Kate gathered three boxes of the same size made of different materials: glass, clear plastic, and aluminum painted black. She pl
    6·2 answers
  • when a stationary rugby ball is kicked, it is contact with a player's about for 0.05 s. during this short time, the ball acceler
    6·1 answer
  • A 52.3 kg student is standing at rest on roller skates when another student throws a bag of 3.5 kg bag of sand. After the studen
    7·1 answer
  • The students on the right are applying a force of 100 N to the right. This is shown by the red arrow. The students on the left a
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!