1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kipish [7]
3 years ago
13

In a game of pool, the cue ball moves at a speed of 2 m/s toward the eight ball. When the cue ball hits the eight ball, the cue

ball bounces off with a speed of 0.8 m/s at an angle of 20°, as shown in the diagram below. Both balls have a mass of 0.6 kg. a. What is the momentum of the system before the collision? (Write it in component form.) (1 point)
b. What is the momentum of the system after the collision? (1 point)



c. Write the velocity of the cue ball after the collision in component form. (1 point)




















d. What is the x-component of the velocity of the eight ball after the collision? (2 points)















e. What is the y-component of the velocity of the eight ball after the collision? (2 points)















f. At what angle does the eight ball travel after the collision? (2 points)















g. What is the magnitude of the eight ball's velocity after the collision? (1 point)
Physics
1 answer:
agasfer [191]3 years ago
7 0

Answer:

a)  p₀ = 1.2 kg m / s,  b) p_f = 1.2 kg m / s,  c)   θ = 12.36, d)  v_{2f} = 1.278 m/s

Explanation:

a system formed by the two balls, which are isolated and the forces during the collision are internal, therefore the moment is conserved

a) the initial impulse is

        p₀ = m v₁₀ + 0

        p₀ = 0.6 2

        p₀ = 1.2 kg m / s

b) as the system is isolated, the moment is conserved so

       p_f = 1.2 kg m / s

we define a reference system where the x-axis coincides with the initial movement of the cue ball

we write the final moment for each axis

X axis

        p₀ₓ = 1.2 kg m / s

        p_{fx} = m v1f cos 20 + m v2f cos θ

        p₀ = p_f

       1.2 = 0.6 (-0.8) cos 20+ 0.6 v_{2f} cos θ

        1.2482 = v_{2f} cos θ

Y axis  

       p_{oy} = 0

       p_{fy} = m v_{1f} sin 20 + m v_{2f} cos θ

       0 = 0.6 (-0.8) sin 20 + 0.6 v_{2f} sin θ

       0.2736 = v_{2f} sin θ

we write our system of equations

        0.2736 = v_{2f} sin θ

        1.2482 = v_{2f} cos θ

divide to solve

        0.219 = tan θ

         θ = tan⁻¹ 0.21919

         θ = 12.36

let's look for speed

           0.2736 = v_{2f} sin θ

            v_{2f} = 0.2736 / sin 12.36

           v_{2f} = 1.278 m / s

You might be interested in
Point charge A with a charge of +4.00 μC is located at the origin. Point charge B with a charge of +7.00 μC is located on the x
never [62]

Answer:

210.3 degrees

Explanation:

The net force exerted on charge A = 59.5 N

Use the x and y coordinates of net force to get the direction

arctan (y/x)

8 0
3 years ago
Read 2 more answers
How does air resistance affect the acceleration of falling objects?
BlackZzzverrR [31]
Air resistance opposes the motion of falling objects. Dense air prefers to stay at low heights. More dense the air is, more air resistance it produces. Hence acceleration of falling objects decreases. Hope this helps!
7 0
3 years ago
What is the height of the Golden Bridge?
Mademuasel [1]

Answer:

hi your answer to this question is 220'

Explanation:

hope this helped you

7 0
3 years ago
Read 2 more answers
Four charges 7 × 10−9 C at (0 m, 0 m), −9 × 10−9 C at (3 m, 3 m), 7 × 10−9 C at (1 m, 3 m), and −8 × 10−9 C at (−3 m, 2 m), are
Ivanshal [37]

Answer:

Magnitude of the resulting force on the 7 nC charge at the origin:

Fn₁= 23.95*10⁻⁹ N

Explanation:

Look at the attached graphic:

Charges of positive signs exert repulsive forces on q₁ + and charges of negative signs exert attractive forces on q₁ +.

q₁ experiences three forces (F₂₁,F₃₁,F₄₁) and we calculate them with Coulomb's law:

F = (k*q₁*q)/(d)²

d_{12} = \sqrt{3^{2}+3^{2}  }  = \sqrt{18} m : distance from q₁ to q₂

(d₁₂)² = 18 m²

d_{13} =\sqrt{1^{2}+3^{2}  } = \sqrt{10} m  : distance from q₁ to q₃

(d₁₃)² = 10 m²

d_{14} =\sqrt{3^{2}+2^{2}  } = \sqrt{13} m  : distance from q₁ to q₄

(d₁₄)² = 13 m²

K=  8.98755 × 10⁹ N *m²/C²

q₁=  7*10⁻⁹C

k*q₁=8.98755*10⁹ *7*10⁻⁹= 62.9

F₂₁= (62.9)*(9* 10⁻⁹) /(18) = 31.45*10⁻⁹ C

F₃₁= (62.9)*(7* 10⁻⁹) /(10) = 44*10⁻⁹ C

F₄₁= (62.9)*(8* 10⁻⁹) /(13) = 38.7*10⁻⁹ C

x-y components of the net force on q₁ (Fn₁):

α= tan⁻¹(3/3)= 45°  ,  β= tan⁻¹(3/1)= 71.56° , θ= tan⁻¹(2/3)= 33.69°

Fn₁x = F₂₁x+ F₃₁x+F₄₁x

F₂₁x =+ F₂₁*cosα =+ (31.45*10⁻⁹)* (cos 45°) = +22.24 *10⁻⁹ N

F₃₁x= -F₃₁*cosβ = - ( 44*10⁻⁹)* (cos 71.56°) = -13.91 *10⁻⁹ N

F₄₁x= -F₄₁*cosθ = -(38.7*10⁻⁹)* (cos 33.69°) = -32.2*10⁻⁹ N

Fn₁x = (+22.24 - 13.91 - 32.2)*10⁻⁹ N

Fn₁x = -23.87 *10⁻⁹ N

Fn₁y = F₂₁y+ F₃₁y+F₄₁y

F₂₁x =+ F₂₁*sinα =+ (31.45*10⁻⁹)* (sin 45°) = +22.24 *10⁻⁹ N

F₃₁x= -F₃₁*sinβ = - ( 44*10⁻⁹)* (sin 71.56°) = -41.74 *10⁻⁹ N

F₄₁x= +F₄₁*sinθ = +(38.7*10⁻⁹)* (sin 33.69°) =+21.47*10⁻⁹ N

Fn₁y = (22.24 -41.74+21.47)*10⁻⁹ N  

Fn₁y = 1.97*10⁻⁹ N

Magnitude of the resulting force on the 7 nC charge at the origin (q₁):

F_{n1} =\sqrt{(Fn_{1x} )^{2}+(Fn_{1y} )^{2} }

F_{n1} =\sqrt{(23.87 )^{2}+(1.97 )^{2} }

Fn₁= 23.95*10⁻⁹ N

8 0
3 years ago
A LED light source contains a 0.5-Watts GaAs (Eg =1.43 eV) LED. Assuming that 0.12% of the electric energy is converted to emiss
Ray Of Light [21]

Answer:

Explanation:

energy emitted by  source per second  = .5 J

Eg = 1.43 eV .

Energy converted into radiation = .5 x .12 = .06 J

energy of one photon = 1.43 eV

= 1.43 x 1.6 x 10⁻¹⁹ J

= 2.288 x 10⁻¹⁹ J .

no of photons generated = .06 / 2.288 x 10⁻¹⁹

= 2.6223 x 10¹⁷

wavelength of photon λ = 1275 / 1.43 nm

= 891.6 nm .

momentum of photon = h / λ  ;  h is plank's constant

= 6.6 x 10⁻³⁴ / 891.6 x 10⁻⁹

= .0074 x 10⁻²⁵ J.s

Total momentum of all the photons generated

= .0074 x 10⁻²⁵  x 2.6223 x 10¹⁷

= .0194 x 10⁻⁸ Js

b ) spectral width in terms of wavelength = 30 nm

frequency width = ?

n = c / λ  , n is frequency , c is velocity of light and λ is wavelength

differentiating both sides

dn = c x dλ / λ²

given dλ = 30 nm

λ = 891.6 nm

dn = 3 x 10⁸ x 30 x 10⁻⁹ / ( 891.6  x 10⁻⁹ )²

= 11.3 x 10¹² Hz .

c )

10 nW = 10  x 10⁻⁹ W

= 10⁻⁸ W .

energy of 50 dB

50 dB = 5 B

I / I₀ = 10⁵   ;   decibel scale is logarithmic , I is energy of sound having dB = 50 and  I₀ = 10⁻¹² W /s

I = I₀ x 10⁵

= 10⁻¹² x 10⁵

= 10⁻⁷ W

= 10 x 10⁻⁸ W

power required

= 10⁻⁸ + 10 x 10⁻⁸ W

= 11  x 10⁻⁸ W.

5 0
3 years ago
Other questions:
  • uppose that 3 J of work is needed to stretch a spring from its natural length of 30 cm to a length of 45 cm. (a) How much work i
    15·1 answer
  • A bicycle rider travels 50.0 km in 2.5 hours what is te bicyclist average speed
    8·2 answers
  • A mass is connected to a spring on a horizontal frictionless surface. The potential energy of the system is zero when the mass i
    7·1 answer
  • A circuit has a current of 1.2 A. If the voltage decreases to one-third of its original amount while the resistance remains cons
    5·1 answer
  • An electron remains suspended between the surface of the Earth (assumed neutral) and a fixed positive point charge, at a distanc
    12·1 answer
  • A watermelon cannon fires a watermelon vertically up into the air at a velocity of +9.5m/s, starting from an initial position of
    11·1 answer
  • The distance traveled by a race car is 7 km in 100 seconds. what is the speed?
    7·2 answers
  • A vector has components x=6 m and y=8 m. what is its magnitude and direction?
    9·1 answer
  • A man walks backward on a bus. To a stationary observer, the bus moves
    14·1 answer
  • Cindy pours cool milk into a hot bowl of oatmeal and then stirs it with a room-temperature spoon. Which substance will have heat
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!