1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kondaur [170]
3 years ago
12

A sailboat is moving across the water at 3.0 m/s. A gust of wind fills its sails and it accelerates at a constant 2.0 m/s2. At t

he same instant, a motorboat at rest starts its engines and accelerates at 4.0 m/s2. After 3.0 seconds have elapsed, find the velocity of the sailboat.
Physics
1 answer:
Flauer [41]3 years ago
5 0

Answer:

v = 9 m/s

Explanation:

It is given that,

Initial speed of the sailboat, u = 3 m/s

Acceleration of the sailboat, a=2\ m/s^2

Initial speed of the motorboat, u = 0

Acceleration of the motorboat, a=4\ m/s^2

Time elapsed, t = 3 s

To find,

The velocity of the sailboat

Solve,

Let v is the velocity of the sailboat after 3 seconds. By using the equation of kinematics, it can be calculated.

v=u+at

v=3\ m/s+2\ m/s^2\times 3\ s

v = 9 m/s

Therefore, the velocity of the sailboat is 9 m/s.

You might be interested in
Determine the gravitational field 300km above the surface of the earth. How does this compare to the field on the earth's surfac
Serjik [45]
The strength of the gravitational field is given by:
g= \frac{GM}{r^2}
where
G is the gravitational constant
M is the Earth's mass
r is the distance measured from the centre of the planet.

In our problem, we are located at 300 km above the surface. Since the Earth radius is R=6370 km, the distance from the Earth's center is:
r=R+h=6370 km+300 km=6670 km= 6.67 \cdot 10^{6} m

And now we can use the previous equation to calculate the field strength at that altitude:
g= \frac{GM}{r^2}= \frac{(6.67 \cdot 10^{-11} m^3 kg^{-1} s^{-2})(5.97 \cdot 10^{24} kg)}{(6.67 \cdot 10^6 m)^2}  = 8.95 m/s^2

And we can see this value is a bit less than the gravitational strength at the surface, which is g_s = 9.81 m/s^2.
4 0
3 years ago
In a mass spectrometer a particle of mass m and charge q is accelerated through a potential difference V and allowed to enter a
Ghella [55]

Answer:

m = B²qR² / 2 V

Explanation:

If v be the velocity after acceleration under potential difference of V

kinetic energy  = loss of electric potential energy

1/2 m v² = Vq ,

v² = 2 Vq / m ----------------------- ( 1 )

In magnetic field , charged particle comes in circular motion in which magnetic force provides centripetal force

magnetic force = centripetal force

Bqv = mv² / R

v = BqR / m

v² = B²q²R² / m²  ------------------------- (2)

from (1) and (2)

B²q²R² / m²  = 2 Vq / m

m = B²q²R² / 2 Vq

m = B²qR² / 2 V

7 0
3 years ago
The mass of the uniform cantilever is 1100 kg. Determine the force on the beam at A. Determine the force on the beam at B. Use C
Mashcka [7]

Answer:

Force A=-−2,697.75 N

Force B=13, 488.75 N

Explanation:

Taking moments at point A, the sum of clockwise and anticlockwise moments equal to zero.

25 mg-20Fb=0

25*1100g=20Fb

Fb=25*1100g/20=1375g

Taking g as 9.81 then Fb=1375*9.81=13,488.75 N

The sum of upward and downward forces are same hence Fa=1100g-1375g=-275g

-275*9.81=−2,697.75. Therefore, force A pulls downwards

Note that the centre of gravity is taken to be half the whole length hence half of 50 is 25 m because center of gravity is always at the middle

8 0
2 years ago
A 2.00-kg object A is connected with a massless string across a massless, frictionless pulley to a 3.00-kg object B. Object A re
slamgirl [31]

Answer:

  • tension: 19.3 N
  • acceleration: 3.36 m/s^2

Explanation:

<u>Given</u>

  mass A = 2.0 kg

  mass B = 3.0 kg

  θ = 40°

<u>Find</u>

  The tension in the string

  The acceleration of the masses

<u>Solution</u>

Mass A is being pulled down the inclined plane by a force due to gravity of ...

  F = mg·sin(θ) = (2 kg)(9.8 m/s^2)(0.642788) = 12.5986 N

Mass B is being pulled downward by gravity with a force of ...

  F = mg = (3 kg)(9.8 m/s^2) = 29.4 N

The tension in the string, T, is such that the net force on each mass results in the same acceleration:

  F/m = a = F/m

  (T -12.59806 N)/(2 kg) = (29.4 N -T) N/(3 kg)

  T = (2(29.4) +3(12.5986))/5 = 19.3192 N

__

Then the acceleration of B is ...

  a = F/m = (29.4 -19.3192) N/(3 kg) = 3.36027 m/s^2

The string tension is about 19.3 N; the acceleration of the masses is about 3.36 m/s^2.

3 0
3 years ago
You have a battery marked " 6.00 V 6.00 V ." When you draw a current of 0.383 A 0.383 A from it, the potential difference betwee
Archy [21]

Answer:

V = 4.81 V

Explanation:

  • As the potential difference between the battery terminals, is less than the rated value of the battery, this means that there is some loss in the internal resistance of the battery.
  • We can calculate this loss, applying Ohm's law to the internal resistance, as follows:

        V_{rint} = I* r_{int}

  • The value of the potential difference between the terminals of the battery, is just the voltage of the battery, minus the loss in the internal resistance, as follows:

       V = V_{b} - V_{rint}  = 5.03 V = 6.0 V - 0.383 A* r_{int}

  • We can solve for rint, as follows:

         r_{int} = \frac{V_{b}-V}{I} =\frac{6.0V-5.03V}{0.383A} = 2.53 \Omega

  • When the circuit draws from battery a current I of 0.469A, we can find the potential difference between the terminals of the battery, as follows:

       V = V_{b} - V_{rint}  = 6.0 V - 0.469 A* 2.53 \Omega= 6.0 V - 1.19 V = 4.81 V

  • As the current draw is larger, the loss in the internal resistance will be larger too, so the potential difference between the terminals of the battery will be lower.
5 0
3 years ago
Other questions:
  • What forces contribute to density
    10·1 answer
  • What information can be deduced by analyzing the graph?
    5·2 answers
  • A student studies how an objects mass and speed are related to its kinetic energy. The table shows the results for one part of t
    15·1 answer
  • Distinguish between the key features of Charles's Law and
    7·1 answer
  • A particle with charge − 3.74 × 10 − 6 C is released at rest in a region of constant, uniform electric field. Assume that gravit
    7·1 answer
  • 1.
    9·1 answer
  • A worker pushes horizontally on a large crate with a force of 170 N, and the crate is moved 3.6 m. How much work was done
    15·1 answer
  • A very large sheet of a conductor carries a uniform charge density of on its surfaces. What is the electric field strength 3.00
    13·1 answer
  • How did Robert Whittaker change classification?
    12·2 answers
  • A 300 g wooden block on a smooth, level surface is firmly attached to a very light horizontal spring with a spring constant of 2
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!