Answer:
1a) 857143 m
1b) 414 m
2a)
2b)
3) the medium of air has a wavelength of 0.334 m, the medium of water has a wavelength of 1.493 m, and the medium of 5.130 m.
Explanation:
Question 1a)
Given the velocity/speed, and frequency of the wave, the length can be calculated using these two quantites.
[ λ = v / f ] wavelength = <u>v</u>elocity of the wave / <u>f</u>requency of the wave in Hz.
Since 3 × 10^8 × ms^-1 is the velocity, and 350Hz is the frequency.
Anything to the negative power is reciprocated. i.e ms^-1 = m/s.
The wavelength is 300000000m/350Hz = 857142.8571428..... m ≈ 857143 m
Question 1b) Given that the frequency of the second wave in water is 1% of the first wave, and the speed of the second wave is 1450ms^-1
Therefore the second wave has a frequency of 1% of 3.5 = 350/100 Hz = 3.5 Hz
The wavelength is found using the same
formula: wavelength = 1450m/3.5Hz = 414.2857142857.... m ≈ 414 m
Question 2a)
Question 2b)
Question 3) Remember, the speed of sound of the medium = frequency of the medium × wavelength of the medium.
Therefore the wavelength of the medium = speed of sound of the medium / frequency of the medium. This has a similar correlation to the wavelength formula. We are given that all these mediums have a frequency of 1KHz = 1000Hz, where So the wavelength of each medium =
Question 4)
Answer:E. Hydrogen was able to participate in an exergonic reaction and carbon dioxide couldn't
Explanation:
An exergonic reaction releases energy to the environment. The combustion of hydrogen contained in the balloon is a chemical reaction. The reaction can take place because hydrogen combines with oxygen in air, that is, the gas is combustible. CO2 does not support combustion, it does not combine with oxygen in air and it is also denser than air, hence does not participate in the exergonic reaction.
Rock is completely immersed in hot water. By the second law of thermodynamics, thermal energy or heat is transferred from substance with higher temperature to substance with lower temperature until they come to thermal equilibrium i.e. both at same temperature.
It is given here that rock is at 20°C which is at lower temperature than water at 80°C. ∴Heat or thermal energy flows from water to rock. So, right choice is-
A. The water gives the rock thermal energy and gets no thermal energy in return.
One of Kepler's laws is that the orbits of planets are elliptical. It's not a suggestion.
BTW, circles are ellipses too, but so special that their likelihood is close to zero.
Is there supposed to be an image if so there is none