The hypothesis by Coleman was that the product of the ob+ gene was the appetite suppressing hormone. Hence, the homozygous ob/ob mutant are in a position to synthesize that hormone, and its circulating level would be zero. He also hypothesized that the product of the db+ gene was the receptor for the appetite-suppressing hormone. Thus, the homozygous db/db mutant would be able to synthesize the hormone but would not be in a position to respond to it. It would eat excessively and produce large amounts of body fat, which in turn would produce large amounts of appetite-suppressing hormone . In the absence of a receptor, the db/db mutant's hormone level would remain abnormally high.
Coleman's hypothesis were confirmed when the precise functions of the ob+ and db+ genes were determined. The peptide hormone encoded by the ob+ gene was named Leptin.
Answer: c. 2 pyruvate molecules
Explanation:
Glycolysis is the first step it the cell respiration cycle. It turns one molecule of glucose into two molecules of pyruvate by a series of reactions catalyzed by different enzymes.
It starts by using 2 ATP to turn glucose into fructose-1,6-bisphosphate, which then divides in two and releases 4 ATP when it turns into two pyruvate molecules.
Thus glycolysis consumes 2 ATP and releases 4 ATP (giving a net gain of 2 ATP) and 2 pyruvate molecules.
Shrubs is the best answer ;)
Collateral ligaments are <span>two strap-like ligaments that act to stabilize the hinge motion of the knee, preventing any lateral or medial movement. It is the structure that connects the knee joint at both sides and prevents its dislocation. There are two types: Tibial (medial) collateral ligament and Fibular (lateral) collateral ligament.</span>
Directional selection I'm pretty sure hope it helps!