Answer:
21 g of N₂ are produced by the decomposition
Explanation:
The reaction is: 2 NaN3 → 2 Na + 3 N2
2 moles of sodium nitride decompose in order to produce 2 moles of Na and 3 moles of nitrogen gas.
According to stoichiometry, ratio is 2:3. Therefore we say,
2 moles of nitride can produce 3 moles of N₂
Then, 0.5 moles of NaN₃ will produce (0.5 . 3) / 2 = 0.75 moles of N₂
We convert the moles to mass, to find the answer
0.75 mol . 28 g / 1 mol = 21 g
It shows the atomic number
Answer:
Nitrogen is limiting reactant while hydrogen is in excess.
Explanation:
Given data:
Mass of N₂ = 25 g
Mass of H₂ = 25 g
Mass of ammonia formed = ?
Solution:
Chemical equation:
N₂ + 3H₂ → 2NH₃
Number of moles of Nitrogen:
Number of moles = mass/ molar mass
Number of moles = 25 g/ 28 g/mol
Number of moles = 0.89 mol
Number of moles of hydrogen:
Number of moles = mass/ molar mass
Number of moles = 25 g/ 2 g/mol
Number of moles = 12.5 mol
Now we will compare the moles of both reactant with ammonia.
H₂ ; NH₃
3 : 2
12.5 : 2/3×12.5 = 8.3
N₂ ; NH₃
1 : 2
0.89 : 2×0.89 = 1.78
The number of moles of ammonia produced by nitrogen are less thus nitrogen is limiting reactant while hydrogen is in excess.
Answer:
1200 mL
Explanation:
Given data
- Initial pressure (P₁): 600.0 mmHg
- Initial volume (V₁): 400.0 mL
- Final pressure (P₂): 200.0 mmHg
For a gaseous sample, there is an inverse relationship between the pressure and the volume. If we consider the gas as an ideal gas, we can find the final volume using Boyle's law.
