Answer:
4 m/s
Explanation:
Momentum is conserved.
m₁ v₁ + m₂ v₂ = (m₁ + m₂) v
(50)(5) + (20)(1.5) = (50 + 20) v
v = 4
The final velocity is 4 m/s.
Because the gravitational force, which points downward, is perfectly balanced by the normal reaction of the floor of the bowling lane, which points upward. The two forces are equal in magnitude, so the net force acting vertically on the bowling ball is zero, therefore there is no acceleration along this direction. Moreover, since the ball is moving in the horizontal direction, the gravitational force has no component along this direction, so it does not change the velocity of the ball.
Answer: A
Explanation: isotopes of the same thing element have the same number of protons in the nucleus but differ in the number of neutrons.
5 seconds is a poor time to ask about, because the speed abruptly changes at exactly 5 seconds.
Up until that time, the speed has been 1 m/s. And then, at exactly 5 seconds, it becomes zero.
_________
It's also a poor question because speed is calculated from the distance covered, but the graph shows displacement, not distance. You can't really tell the distance covered from a displacement graph.
For example, if an object happens to be moving in a circle around the place where it started, then the total distance covered keeps increasing, but its displacement is constant.
The final velocity of the bullet+block is 0.799 m/s
Explanation:
We can solve this problem by applying the principle of conservation of momentum: in fact, the total momentum of the bullet-block system must be conserved before and after the collision.
Mathematically, we can write:

where
m = 0.001 kg is the mass of the bullet
u = 800 m/s is the initial velocity of the bullet
M = 1 kg is the mass of the block
U = 0 is the initial velocity of the block (initially at rest)
v is the final combined velocity of the bullet and the block
Solving the equation for v, we find the final velocity:

Learn more about conservation of momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly