E S *
The "E" represents Earth, "S" represent Sun, and the "*" represents the nearest star(which is Proxima Centauri).
The main thing to worry about here is units, so ill label everything out.
D'e,s'(Distance between earth and sun) = .<span>00001581 light years
D'e,*'(Distance between earth and Proxima) = </span><span>4.243 light years
Now this is where it gets fun, we need to put all the light years into centimeters.(theres alot)
In one light year, there are </span>9.461 * 10^17 centimeters.(the * in this case means multiplication) or 946,100,000,000,000,000 centimeters.
To convert we multiply the light years we found by the big number.
D'e,s'(Distance between earth and sun) = 1.496 * 10^13 centimeters<span>
D'e,*'(Distance between earth and Proxima) = </span><span>4.014 * 10^18 centimeters
</span>
Now we scale things down, we treat 1.496 * 10^13 centimeters as a SINGLE centimeter, because that's the distance between the earth and the sun. So all we have to do is divide (4.014 * 10^18 ) by (<span>1.496 * 10^13 ).
Why? because that how proportions work.
As a result, you get a mere 268335.7 centimeters.
To put that into perspective, that's only about 1.7 miles
A lot of my numbers came from google, so they are estimations and are not perfect, but its hard to be on really large scales.</span>
Answer:
13.33 or 13 1/3m/s (meters per second)
Explanation:
In physics, we use the basic units of meters and seconds. So first convert (km) into meters (m) and also hours and minutes into seconds (s). We end up with 120000m and 9000s. Then divide the 120000m by the 9000s and you end up with 13.33 or 13 1/3 m/s.
Qualitative data gives the information of quality which can not be measured in numbers. For example: Color of eyes, softness of skin.
Quantitative data is information of quantity that can be represented in numbers. For example length and mass of any object.
Zinc is a silver-gray metal is a qualitative data, here silver gray color is quality of zinc metal which can not be measured in numbers.
Chlorine has a density of 3.2 g/L is a quantitative data. The value of density can be compared with other elements by comparing the numbers.
Gallium is not found in nature is neither qualitative nor quantitative.
Nitrogen has a melting point of –210.00 °C is a quantitative data because this is expressed in numbers.
Aluminum is a solid is a qualitative data because it tells about the state of element which can not be measured in numbers.