1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
motikmotik
3 years ago
6

The variable you want to test is...

Physics
1 answer:
dolphi86 [110]3 years ago
6 0
The manipulated/ dependent variable
You might be interested in
What is your hypothesis (or hypotheses) for this experiment?
mariarad [96]

Answer:

mr or ms please type ur question fully please

7 0
3 years ago
Read 2 more answers
100POINTTTTTSSS PLEASE HELP
attashe74 [19]
Components connected in series are connected along a single path, so the same current flows through all of the components. If the light bulbs are connected in parallel, the currents through the light bulbs combine to form the current in the battery, while the voltage drop is across each bulb and they all glow.
8 0
3 years ago
A soccer player practices kicking the ball into the goal from halfway down the soccer field. The time it takes for the ball to g
12345 [234]

This is correct, I just did the test. Yes, displacement is 45 meters, elapsed time is three seconds, and the direction is toward the goal.

4 0
3 years ago
Read 2 more answers
Please help, I do not understand
Anettt [7]
I think the key here is to be exquisitely careful at all times, and
any time we make any move, keep our units with it.

We're given two angular speeds, and we need to solve for a time.

Outer (slower) planet:
Angular speed =  ω  rad/sec
Time per unit angle =  (1/ω)  sec/rad
Angle per revolution = 2π rad
Time per revolution = (1/ω sec/rad) · (2π rad) = 2π/ω seconds .

Inner (faster) planet:
Angular speed =  2ω  rad/sec
Time per unit angle =  (1/2ω)  sec/rad
Angle per revolution = 2π rad
Time per revolution = (1/2ω sec/rad) · (2π rad) = 2π/2ω sec = π/ω seconds.

So far so good.  We have the outer planet taking 2π/ω seconds for one
complete revolution, and the inner planet doing it in only π/ω seconds ...
half the time for double the angular speed.  Perfect !

At this point, I know what I'm thinking, but it's hard to explain.
I'm pretty sure that the planets are in line on the same side whenever the
total elapsed time is something like a common multiple of their periods.
What I mean is:

They're in line, SOMEwhere on the circles, when

     (a fraction of one orbit) = (the same fraction of the other orbit)    
AND
     the total elapsed time is a common multiple of their periods.

Wait !  Ignore all of that.  I'm doing a good job of confusing myself, and
probably you too.  It may be simpler than that.  (I hope so.)  Throw away
those last few paragraphs.

The planets are in line again as soon as the faster one has 'lapped'
the slower one ... gone around one more time.  
So, however many of the longer period have passed, ONE MORE
of the shorter period have passed.  We're just looking for the Least
Common Multiple of the two periods.

      K (2π/ω seconds)  =  (K+1) (π/ω seconds)

                     2Kπ/ω   =    Kπ/ω + π/ω

Subtract  Kπ/ω :    Kπ/ω = π/ω

Multiply by  ω/π :      K  =  1

(Now I have a feeling that I have just finished re-inventing the wheel.)

And there we have it:

     In the time it takes the slower planet to revolve once,
     the faster planet revolves twice, and catches up with it.
    
     It will be  2π/ω  seconds before the planets line up again.
    
     When they do, they are again in the same position as shown
     in the drawing.

To describe it another way . . . 

     When Kanye has completed its first revolution ...

     Bieber has made it halfway around.

     Bieber is crawling the rest of the way to the starting point while ...

     Kanye is doing another complete revolution.

     Kanye laps Bieber just as they both reach the starting point ...

     Bieber for the first time, Kanye for the second time.


You're welcome.  The generous bounty of 5 points is very gracious,
and is appreciated.  The warm cloudy water and green breadcrust
are also delicious.
5 0
3 years ago
types of plate boundaries where two plates separate or move apart?? does anyone know please help ??????
Shtirlitz [24]
Erosion i belive it is called
7 0
3 years ago
Read 2 more answers
Other questions:
  • Which atom is most likely to accept electrons to form an ionic bond?
    15·1 answer
  • Which of the following describes an electric fan?
    9·1 answer
  • Select the correct answer.
    13·1 answer
  • Calculate the wavelength λ and the frequency f of the photons that have an energy of E photon = 2.32 × 10 − 19 J. Ephoton=2.32×1
    14·1 answer
  • What is wind energy?
    14·1 answer
  • 1 + 1 + 1 + 2 equals to what​
    7·2 answers
  • The liquid pressure
    12·2 answers
  • Which phrase describes an electromagnetic wave
    7·1 answer
  • A hypothetical planet has a mass 2.81 times that of Earth, but the same radius.
    14·1 answer
  • what is the magnitude of the gravitational force acting on the earth due to the sun? express your answer in newtons.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!