Answer:
If the buoyant force is greater than the object's weight, the object will rise to the surface and float. If the buoyant force is less than the object's weight, the object will sink. If the buoyant force equals the object's weight, the object will remain suspended at that depth.
Explanation:
Not much explaining to do here!
The answer is B I think sorry if it’s wrong
Answer:
v = 0.489 m/s
Explanation:
It is given that,
Mass of a box, m = 1.5 kg
The compression in the spring, x = 6.5 cm = 0.065 m
Let the spring constant of the spring is 85 N/m
We need to find the velocity of the box (v) when it hit the spring. It is based on the conservation of energy. The kinetic energy of spring before collision is equal to the spring energy after compression i.e.


So, the speed of the box is 0.489 m/s.
The problem you would encounter is measuring the height of two different people, a tall one and a short one, and getting the same answer for both of them.
No matter WHAT we're hearing out of the White House these days, you CAN'T bend and stretch your standard measuring devices, or any other 'facts', to make them fit the thing that you're measuring. This does not work. You're always entitled to your own opinions, but you're not entitled to your own facts.