Using the binomial distribution, it is found that there is a 0.0328 = 3.28% probability that at least 2 of them choose the same quote.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem, we have that:
- There are 6 students, hence n = 6.
- There are 20 quotes, hence the probability of each being chosen is p = 1/20 = 0.05.
The probability of one quote being chosen at least two times is given by:

In which:
P(X < 2) = P(X = 0) + P(X = 1).
Then:



Then:
P(X < 2) = P(X = 0) + P(X = 1) = 0.7351 + 0.2321 = 0.9672.

0.0328 = 3.28% probability that at least 2 of them choose the same quote.
More can be learned about the binomial distribution at brainly.com/question/24863377
Correct Options:- A) x-9 and E) x+6
Step by Step Solution:
1. 3x - 2y = 8 Subtract 3x on both sides
-2y = 8 - 3x Divide by -2 on both sides to get y by itself
y = -4 + 3/2x
2. a + b / 3 = 5 Multiply 3 on both sides
a + b = 15 Subtract a on both sides to get b by itself
b = 15 - a
3. 12x - 4y = 20 Subtract -12x on both sides
-4y = 20 - 12x Divide -4 on both sides to get y by itself
y = -5 + 3x
4. y + 3 = -5(x - 2) Multiply -5 to (x-2)
y + 3 = -5x + 10 Subtract 3 on both sides to get y by itself
y = -5x + 7
Answer:
1. sum of term = 465
2. nth term of the AP = 30n - 10
Step-by-step explanation:
1. The sum of all natural number from 1 to 30 can be computed as follows. The first term a = 1 and the common difference d = 1 . Therefore
sum of term = n/2(a + l)
where
a = 1
l = last term = 30
n = number of term
sum of term = 30/2(1 + 30)
sum of term = 15(31)
sum of term = 465
2.The nth term of the sequence can be gotten below. The sequence is 20, 50, 80 ......
The first term which is a is equals to 20. The common difference is 50 - 20 or 80 - 50 = 30. Therefore;
a = 20
d = 30
nth term of an AP = a + (n - 1)d
nth term of an AP = 20 + (n - 1)30
nth term of an AP = 20 + 30n - 30
nth term of the AP = 30n - 10
The nth term formula can be used to find the next term progressively. where n = number of term
The sequence will be 20, 50, 80, 110, 140, 170, 200..............