The answer would be -15.74
Answer: A & C
<u>Step-by-step explanation:</u>
HL is Hypotenuse-Leg
A) the hypotenuse from ΔABC ≡ the hypotenuse from ΔFGH
a leg from ΔABC ≡ a leg from ΔFGH
Therefore HL Congruency Theorem can be used to prove ΔABC ≡ ΔFGH
B) a leg from ΔABC ≡ a leg from ΔFGH
the other leg from ΔABC ≡ the other leg from ΔFGH
Therefore LL (not HL) Congruency Theorem can be used.
C) the hypotenuse from ΔABC ≡ the hypotenuse from ΔFGH
at least one leg from ΔABC ≡ at least one leg from ΔFGH
Therefore HL Congruency Theorem can be used to prove ΔABC ≡ ΔFGH
D) an angle from ΔABC ≡ an angle from ΔFGH
the other angle from ΔABC ≡ the other angle from ΔFGH
AA cannot be used for congruence.
<h3>
Answers:</h3>
The first ordered pair is ( -4 , -3 )
The second ordered pair is ( 8, 3 )
=================================================
Explanation:
The first point is (x,-3) where x is unknown. It pairs up with y = -3 so we can use algebra to find x
x-2y = 2
x-2(-3) = 2 ... replace every y with -3; isolate x
x+6 = 2
x = 2-6
x = -4
The first point is (-4, -3)
---------------------------
We'll do something similar for the other point. This time we know x but don't know y. Plug x = 8 into the equation and solve for y
x-2y = 2
8-2y = 2
-2y = 2-8
-2y = -6
y = -6/(-2)
y = 3
The second point is (8, 3)
Answer:
The answer is
.
Step-by-step explanation:
First, it is important to recall that the group law is not commutative in general, so we cannot assume it here. In order to solve the exercise we need to remember the axioms of group, specially the existence of the inverse element, i.e., for each element
there exist another element, denoted by
such that
, where
stands for the identity element of G.
So, given the equality
we make a left multiplication by
and we obtain:

But,
. Hence,
.
Now, in the equality
we make a right multiplication by
, and we obtain
.
Recall that
and
. Therefore,
.
Answer:
417
Step-by-step explanation:
3(2+1-3)-212*2+1-4=?
3-212*2+1-4=?
3-423+1-4=?
420+1-4=?
421-4=?
417